Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Synapse ; 78(4): e22294, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38813759

RESUMO

Major depressive disorder is one of the most prevalent mental health disorders, posing a global socioeconomic burden. Conventional antidepressant treatments have a slow onset of action, and 30% of patients show no clinically significant treatment response. The recently approved fast-acting antidepressant S-ketamine, an N-methyl-D-aspartate receptor antagonist, provides a new approach for treatment-resistant patients. However, knowledge of S-ketamine's mechanism of action is still being established. Depressed human subjects have lower striatal dopamine transporter (DAT) availability compared to healthy controls. Rodent studies report increased striatal dopamine concentration in response to acute ketamine administration. In vivo [18F]FE-PE2I ([18F]-(E)-N-(3-iodoprop-2-enyl)-2ß-carbofluoroethoxy-3ß-(4'-methyl-phenyl) nortropane) positron emission tomography (PET) imaging of the DAT has not previously been applied to assess the effect of acute subanesthetic S-ketamine administration on DAT availability. We applied translational in vivo [18F]FE-PE2I PET imaging of the DAT in healthy female rats to evaluate whether an acute subanesthetic intraperitoneal dose of 15 mg/kg S-ketamine alters DAT availability. We also performed [3H]GBR-12935 autoradiography on postmortem brain sections. We found no effect of acute S-ketamine administration on striatal DAT binding using [18F]FE-PE2I PET or [3H]GBR-12935 autoradiography. This negative result does not support the hypothesis that DAT changes are associated with S-ketamine's rapid antidepressant effects, but additional studies are warranted.


Assuntos
Corpo Estriado , Proteínas da Membrana Plasmática de Transporte de Dopamina , Ketamina , Ratos Sprague-Dawley , Animais , Ketamina/farmacologia , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Proteínas da Membrana Plasmática de Transporte de Dopamina/efeitos dos fármacos , Feminino , Corpo Estriado/metabolismo , Corpo Estriado/efeitos dos fármacos , Corpo Estriado/diagnóstico por imagem , Ratos , Tomografia por Emissão de Pósitrons , Autorradiografia
2.
Neuropharmacology ; 256: 110018, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-38810925

RESUMO

Diets high in sucrose and fat are becoming more prevalent the world over, accompanied by a raised prevalence of cardiovascular diseases, cancers, diabetes, obesity, and metabolic syndrome. Clinical studies link unhealthy diets with the development of mental health disorders, particularly depression. Here, we investigate the effects of 12 days of sucrose consumption administered as 2 L of 25% sucrose solution daily for 12 days in Göttingen minipigs on the function of brain receptors involved in reward and motivation, regulating feeding, and pre- and post-synaptic mechanisms. Through quantitative autoradiography of cryostat sections containing limbic brain regions, we investigated the effects of sucrose restricted to a 1-h period each morning, on the specific binding of [3H]raclopride on dopamine D2/3 receptors, [3H]UCB-J at synaptic vesicle glycoprotein 2A (SV2A), [3H]MPEPγ at metabotropic glutamate receptor subtype 5 (mGluR5) and [3H]SR141716A at the cannabinoid receptor 1 (CB1). Compared to control diet animals, the sucrose group showed significantly lower [3H]UCB-J and [3H]MPEPγ binding in the prefrontal cortex. The sucrose-consuming minipigs showed higher hippocampal CB1 binding, but unaltered dopamine D2/3 binding compared to the control group. We found that the sucrose diet reduced the synaptic density marker while increasing CB1 binding in limbic brain structures, which may subserve maladaptive changes in appetite regulation and feeding. Further studies of the effects of diets and lifestyle habits on brain neuroreceptor and synaptic density markers are warranted.


Assuntos
Sacarose , Porco Miniatura , Animais , Suínos , Sacarose/administração & dosagem , Masculino , Receptor de Glutamato Metabotrópico 5/metabolismo , Receptores de Canabinoides/metabolismo , Sinapses/metabolismo , Sinapses/efeitos dos fármacos , Receptor CB1 de Canabinoide/metabolismo , Receptores de Dopamina D2/metabolismo , Encéfalo/metabolismo , Encéfalo/efeitos dos fármacos , Feminino , Receptores de Dopamina D3/metabolismo
3.
JHEP Rep ; 6(3): 100992, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38415019

RESUMO

Background & Aims: Cognitive dysfunction is an increasingly recognised manifestation of metabolic dysfunction-associated steatotic liver disease (MASLD), but the mechanistic link remains unclear. The aim of this study was to investigate the hypothesis that experimental MASLD leads to cognitive dysfunction via systemic inflammation and neuroinflammation. Methods: Twenty male Sprague Dawley rats were randomised to a high-fat high-cholesterol (HFHC) diet to induce MASLD, or a standard diet (n = 10/group), for 16 weeks. Assessments included: MASLD severity (histology), neurobehaviour, inflammation (liver, plasma and cerebrospinal fluid), brain microglia and astrocyte activation, and synaptic density. Results: The HFHC diet induced MASLD with extensive steatosis and lobular inflammation without fibrosis. Several plasma cytokines were elevated (CXCL1, IL-6, IL-17, MIP-1α, MCP-1, IL-10; all p <0.05) and correlated with increases in hepatic chemokine gene expression. Cerebrospinal fluid concentrations of CXCL1 were elevated (p = 0.04). In the prefrontal brain cortex, we observed a 19% increase in microglial activation confirmed by Iba1 immunohistochemistry (p = 0.03) and 3H-PK11195 autoradiography (p <0.01). In parallel, synaptic density was reduced to 92%, assessed by 3H-UCB-J autoradiography (p <0.01). MASLD animals exhibited impaired memory to previously encountered objects in the novel object recognition test (p = 0.047) and showed depression-like behaviour evidenced by increased immobility time (p <0.01) and reduced swimming time (p = 0.03) in the forced swim test. Conclusions: Experimental non-fibrotic MASLD, as a model to reflect the early stage of human disease, results in cognitive impairment and depression-like behaviour. This is associated with an inflammatory phenotype not only in the liver but also in the plasma and brain, which together with diminished synaptic density, provides a pathophysiological link between liver disease and cognitive dysfunction in MASLD. Impact and implications: Cognitive dysfunction is an increasingly recognised comorbidity in patients with metabolic dysfunction-associated steatotic liver disease (MASLD), yet the underlying mechanisms remain unclear. This study provides evidence of impaired memory and depression-like symptoms in early experimental MASLD and indicates that hepatic inflammation may drive a systemic inflammatory response, resulting in neuroinflammation and reduced brain synaptic density. The evidence of impaired memory in MASLD and establishing its underlying pathophysiological link provides insights that could guide the development of potential new treatments for this increasingly common condition in people of working age. The study also emphasises the need to develop better tools for clinical cognitive testing, which will enable physicians to assess and manage brain dysfunction early in MASLD.

4.
Biomolecules ; 13(4)2023 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-37189421

RESUMO

The noradrenaline system attracts attention for its role in mood disorders and neurodegenerative diseases but the lack of well-validated methods impairs our understanding when assessing its function and release in vivo. This study combines simultaneous positron emission tomography (PET) and microdialysis to explore if [11C]yohimbine, a selective antagonist radioligand of the α2 adrenoceptors, may be used to assess in vivo changes in synaptic noradrenaline during acute pharmacological challenges. Anesthetised Göttingen minipigs were positioned in a head holder in a PET/CT device. Microdialysis probes were placed in the thalamus, striatum and cortex and dialysis samples were collected every 10 min. Three 90 min [11C]yohimbine scans were acquired: at baseline and at two timepoints after the administration of amphetamine (1-10 mg/kg), a non-specific releaser of dopamine and noradrenaline, or nisoxetine (1 mg/kg), a specific noradrenaline transporter inhibitor. [11C]yohimbine volumes of distribution (VT) were obtained using the Logan kinetic model. Both challenges induced a significant decrease in yohimbine VT, with time courses reflecting their different mechanisms of action. Dialysis samples revealed a significant increase in noradrenaline extracellular concentrations after challenge and an inverse correlation with changes in yohimbine VT. These data suggest that [11C]yohimbine can be used to evaluate acute variations in synaptic noradrenaline concentrations after pharmacological challenges.


Assuntos
Norepinefrina , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Animais , Microdiálise , Norepinefrina/metabolismo , Tomografia por Emissão de Pósitrons/métodos , Diálise Renal , Porco Miniatura , Ioimbina/metabolismo
5.
Curr Neuropharmacol ; 21(5): 1241-1272, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36797611

RESUMO

Parkinson's disease (PD) is a debilitating neurodegenerative multisystem disorder leading to motor and non-motor symptoms in millions of individuals. Despite intense research, there is still no cure, and early disease biomarkers are lacking. Animal models of PD have been inspired by basic elements of its pathogenesis, such as dopamine dysfunction, alpha-synuclein accumulation, neuroinflammation and disruption of protein degradation, and these have been crucial for a deeper understanding of the mechanisms of pathology, the identification of biomarkers, and evaluation of novel therapies. Imaging biomarkers are non-invasive tools to assess disease progression and response to therapies; their discovery and validation have been an active field of translational research. Here, we highlight different considerations of animal models of PD that can be applied to future research, in terms of their suitability to answer different research questions. We provide the reader with important considerations of the best choice of model to use based on the disease features of each model, including issues related to different species. In addition, positron emission tomography studies conducted in PD animal models in the last 5 years are presented. With a variety of different species, interventions and genetic information, the choice of the most appropriate model to answer research questions can be daunting, especially since no single model recapitulates all aspects of this complex disorder. Appropriate animal models in conjunction with in vivo molecular imaging tools, if selected properly, can be a powerful combination for the assessment of novel therapies and developing tools for early diagnosis.


Assuntos
Doença de Parkinson , Animais , Doença de Parkinson/metabolismo , alfa-Sinucleína/metabolismo , Tomografia por Emissão de Pósitrons , Modelos Animais de Doenças , Progressão da Doença , Biomarcadores
6.
Neurotoxicology ; 91: 166-176, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35569565

RESUMO

The Göttingen minipig is a large animal with a gyrencephalic brain that expresses -complex behavior, making it an attractive model for Parkinson's disease research. Here, we investigate the temporal evolution of presynaptic dopaminergic function for 14 months after injections of 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) into the minipig using a multi-tracer longitudinal positron emission tomography (PET) design. We injected seven sedated minipigs with 1-2 mg/kg of MPTP, and two with saline, three times a week over four weeks. We monitored behavioral deficits using a validated motor scale and walking mat. Brains were imaged with (+)-⍺-[11C]-dihydrotetrabenazine ([11C]-DTBZ) and [18F]-dihydroxyphenylalanine ([18F]-FDOPA) PET at baseline and 1, 3, 10 and 14 months after MPTP injection, and immunohistochemistry was used to assess nigral cell loss. The minipigs showed mild bradykinesia and impaired coordination at early timepoints after MPTP. PET revealed decreases of striatal [11C]-DTBZ and [18F]-FDOPA uptake post-MPTP with partial spontaneous recovery of [18F]-FDOPA after 10 months. Postmortem analysis estimated an MPTP-induced nigral loss of 57% tyrosine hydroxylase+ and 43% Nissl-stained cells. Normal motor function despite substantial damage to the dopaminergic system is consistent with prodromal Parkinson's disease, and offers an opportunity for testing disease-modifying therapies. However, partial spontaneous recovery of dopamine terminal function must be taken into account in future studies.


Assuntos
Dopamina , Doença de Parkinson , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina/farmacologia , Animais , Corpo Estriado/diagnóstico por imagem , Modelos Animais de Doenças , Feminino , Substância Negra , Suínos , Porco Miniatura
7.
Biomedicines ; 9(12)2021 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-34944691

RESUMO

Progressive degeneration of dopaminergic neurons, immune activation, and α-synuclein pathology characterize Parkinson's disease (PD). We previously reported that unilateral intranigral injection of recombinant adeno-associated viral (rAAV) vectors encoding wild-type human α-synuclein produced a rat model of early PD with dopamine terminal dysfunction. Here we tested the hypothesis that decreases in dopamine result in increased postsynaptic dopamine D2/D3 receptor expression, neuroinflammation, and reduced synaptic vesicle glycoprotein 2A (SV2A) density. Rats were injected with rAAV encoding α-synuclein or green fluorescent protein and subjected to non-pharmacological motor tests, before euthanization at 12 weeks post-injection. We performed: (1) in situ hybridization of nigral tyrosine hydroxylase mRNA, (2) HPLC of striatal dopamine content, and (3) autoradiography with [3H]raclopride, [3H]DTBZ, [3H]GBR12935, [3H]PK11195, and [3H]UCB-J to measure binding at D2/3 receptors, vesicular monoamine transporter 2, dopamine transporters, mitochondrial translocator protein, and SV2A, respectively. rAAV-α-synuclein induced motor asymmetry and reduced tyrosine hydroxylase mRNA and dopamine content in ipsilateral brain regions. This was paralleled by elevated ipsilateral postsynaptic dopamine D2/3 receptor expression and immune activation, with no changes to synaptic SV2A density. In conclusion, α-synuclein overexpression results in dopaminergic degeneration that induced compensatory increases in D2/3 binding and immune activation, recapitulating many of the pathological characteristics of PD.

8.
Mol Imaging Biol ; 22(5): 1290-1300, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32514885

RESUMO

PURPOSE: Loss of neuronal synapse function is associated with a number of brain disorders. The [11C]UCB-J positron emission tomography (PET) tracer allows for in vivo examination of synaptic density, as it binds to synaptic vesicle glycoprotein 2A (SV2A) expressed in presynaptic terminals. Here, we characterise [11C]UCB-J imaging in Göttingen minipigs. PROCEDURES: Using PET imaging, we examined tracer specificity and compared kinetic models. We explored the use of a standard blood curve and centrum semiovale white matter as a reference region. We compared in vivo [11C]UCB-J PET imaging to in vitro autoradiography, Western blotting and real-time quantitative polymerase chain reaction. RESULTS: The uptake kinetics of [11C]UCB-J could be described using a 1-tissue compartment model and blocking of SV2A availability with levetiracetam showed dose-dependent specific binding. Population-based blood curves resulted in reliable [11C]UCB-J binding estimates, while it was not possible to use centrum semiovale white matter as a non-specific reference region. Brain [11C]UCB-J PET signals correlated well with [3H]UCB-J autoradiography and SV2A protein levels. CONCLUSIONS: [11C]UCB-J PET is a valid in vivo marker of synaptic density in the minipig brain, with binding values close to those reported for humans. Minipig models of disease could be valuable for investigating the efficacy of putative neuroprotective agents for preserving synaptic function in future non-invasive, longitudinal studies.


Assuntos
Encéfalo/diagnóstico por imagem , Tomografia por Emissão de Pósitrons , Piridinas/química , Pirrolidinonas/química , Animais , Autorradiografia , Imageamento por Ressonância Magnética , Proteínas do Tecido Nervoso/metabolismo , Suínos , Porco Miniatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...