Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 8(3): 2907-2914, 2023 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-36713694

RESUMO

Gadolinium (Gd) based contrast agents (GBCAs) are widely used in magnetic resonance imaging (MRI) and are paramount to cancer diagnostics and tumor pharmacokinetic analysis. Accurate quantification of gadolinium concentration is essential to monitoring the biodistribution, clearance, and pharmacodynamics of GBCAs. However, current methods of quantifying gadolinium in blood or plasma (biological media) are both low throughput and clinically unavailable. Here, we have demonstrated the use of a sensitized gadolinium chelate, Gd[DTPA-cs124], as an MRI contrast agent that can be used to measure the concentration of gadolinium via luminescence quantification in biological media following transmetalation with a terbium salt. Gd[DTPA-cs124] was synthesized by conjugating carbostyril-124 (cs124) to diethylenetriaminepentaacetic acid (DTPA) and chelating to gadolinium. We report increases in both stability and relaxivity compared to the clinically approved analog Gd[DTPA] (gadopentetic acid or Magnevist). In vivo MRI experiments were conducted using C57BL6 mice in order to further illustrate the performance of Gd[DTPA-cs124] as an MRI contrast agent in comparison to Magnevist. Our results indicate that similar chemical modification to existing clinically approved GBCA may likewise provide favorable property changes, with the ability to be used in a gadolinium quantification assay. Furthermore, our assay provides a straightforward and high-throughput method of measuring gadolinium in biological media using a standard laboratory plate reader.

2.
Sci Rep ; 12(1): 13806, 2022 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-35970901

RESUMO

Carbon quantum dots (CQDs) derived from biomass, a suggested green approach for nanomaterial synthesis, often possess poor optical properties and have low photoluminescence quantum yield (PLQY). This study employed an environmentally friendly, cost-effective, continuous hydrothermal flow synthesis (CHFS) process to synthesise efficient nitrogen-doped carbon quantum dots (N-CQDs) from biomass precursors (glucose in the presence of ammonia). The concentrations of ammonia, as nitrogen dopant precursor, were varied to optimise the optical properties of CQDs. Optimised N-CQDs showed significant enhancement in fluorescence emission properties with a PLQY of 9.6% compared to pure glucose derived-CQDs (g-CQDs) without nitrogen doping which have PLQY of less than 1%. With stability over a pH range of pH 2 to pH 11, the N-CQDs showed excellent sensitivity as a nano-sensor for the highly toxic highly-pollutant chromium (VI), where efficient photoluminescence (PL) quenching was observed. The optimised nitrogen-doping process demonstrated effective and efficient tuning of the overall electronic structure of the N-CQDs resulting in enhanced optical properties and performance as a nano-sensor.


Assuntos
Pontos Quânticos , Amônia , Carbono/química , Glucose , Nitrogênio/química , Pontos Quânticos/química
3.
J Phys Chem C Nanomater Interfaces ; 121(41): 22707-22719, 2017 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-29606993

RESUMO

Organic solar cells are a promising renewable energy technology, offering the advantages of mechanical flexibility and solution processability. An understanding of the electronic excited states and charge separation pathways in these systems is crucial if efficiencies are to be further improved. Here we use light induced electron paramagnetic resonance (LEPR) spectroscopy and density functional theory calculations (DFT) to study the electronic excited states, charge transfer (CT) dynamics and triplet exciton formation pathways in blends of the small molecule donors (DTS(FBTTh2)2, DTS(F2BTTh2)2, DTS(PTTh2)2, DTG(FBTTh2)2 and DTG(F2BTTh2)2) with the fullerene derivative PC61BM. Using high frequency EPR the g-tensor of the positive polaron on the donor molecules was determined. The experimental results are compared with DFT calculations which reveal that the spin density of the polaron is distributed over a dimer or trimer. Time-resolved EPR (TR-EPR) spectra attributed to singlet CT states were identified and the polarization patterns revealed similar charge separation dynamics in the four fluorobenzothiadiazole donors, while charge separation in the DTS(PTTh2)2 blend is slower. Using TR-EPR we also investigated the triplet exciton formation pathways in the blend. The polarization patterns reveal that the excitons originate from both intersystem crossing (ISC) and back electron transfer (BET) processes. The DTS(PTTh2)2 blend was found to contain substantially more triplet excitons formed by BET than the fluorobenzothiadiazole blends. The higher BET triplet exciton population in the DTS(PTTh2)2 blend is in accordance with the slower charge separation dynamics observed in this blend.

5.
Anal Chem ; 81(10): 3986-96, 2009 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-19391602

RESUMO

Ricinus communis (also know as the castor bean plant) whose forbears escaped from suburban gardens or commercial cultivation grow wild in many countries. In temperate and tropical climates seeds will develop to maturity, and plants may be perennial. In Australia these plants have become widespread and are regarded as noxious weeds in many localities. The seeds of R. communis contain ricin, a protein toxin which can easily be extracted into an aqueous solution. Ricin is toxic by ingestion, inhalation, and injection. The history of terrorist and anarchist interest in the use of seeds from R. communis has driven the development of strategies for determination of cultivar and geographic location of the source of an extract of wild-grown castor bean seed. This forensic information is of considerable interest to law enforcement and intelligence organizations. During forensic studies of both the metabolome and proteome of extracts from eight specimens of six different cultivars of R. communis ("zanzibariensis" collected from Kenya and Tanzania, "gibsonii", "impala", "dehradun", "carmencita", and "sanguineus" collected from Spain and Tanzania), three peptide biomarkers (designated Ricinus communis biomarkers, or RCB) were identified in both the MALDI and electrospray LC-MS spectra. Two of these peptides (RCB-1 and RCB-2) were present in varying amounts in all cultivars, while RCB-3 was present only in the "carmencita" cultivar. The amino acid sequences of RCB-1 to -3 were determined using LC-MS(n) fragmentation and de novo sequencing on both the intact and the carbamidomethyl modified peptides. The connectivity of the two disulfide bonds that were present in all three RCB were determined using a strategy of partial reduction and differential alkylation using tris-(2-carboxyethyl)phosphine with N-ethylmaleimide to reduce and alkylate the most accessible disulfide bond, followed by reduction and alkylation of the remaining disulfide bond with dithiolthreitol and iodoacetamide. The possible functional role of RCB-1 to -3 in R. communis seeds is also discussed.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Peptídeos/análise , Ricinus communis/química , Espectrometria de Massas por Ionização por Electrospray/métodos , Sequência de Aminoácidos , Biomarcadores/análise , Biomarcadores/química , Ricinus communis/classificação , Medicina Legal , Dados de Sequência Molecular , Peptídeos/química , Plantas Tóxicas , Ricina/química , Sementes/química , Análise de Sequência
6.
Bioorg Med Chem Lett ; 19(4): 1071-4, 2009 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-19171483

RESUMO

Inhibitors of phenylethanolamine N-methyltransferase [PNMT, the enzyme that catalyzes the final step in the biosynthesis of epinephrine (Epi)] may be of use in determining the role of Epi in the central nervous system. Here we describe the synthesis and characterization of 7-SCN tetrahydroisoquinoline as an affinity label for human PNMT.


Assuntos
Feniletanolamina N-Metiltransferase/metabolismo , Tetra-Hidroisoquinolinas/síntese química , Tetra-Hidroisoquinolinas/farmacologia , Animais , Epinefrina/metabolismo , Epinefrina/fisiologia , Humanos , Feniletanolamina N-Metiltransferase/antagonistas & inibidores , Ratos , Tetra-Hidroisoquinolinas/química , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...