Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Haematologica ; 107(2): 519-531, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33567808

RESUMO

Antisense oligonucleotides (ASO) are DNA-based, disease-modifying drugs. Clinical trials with 2'-O-methoxyethyl (2'MOE) ASO have shown dose- and sequence-specific lowering of platelet counts according to two phenotypes. Phenotype 1 is a moderate (but not clinically severe) drop in platelet count. Phenotype 2 is rare, severe thrombocytopenia. This article focuses on the underlying cause of the more common phenotype 1, investigating the effects of ASO on platelet production and platelet function. Five phosphorothioate ASO were studied: three 2'MOE sequences; 487660 (no effects on platelet count), 104838 (associated with phenotype 1), and 501861 (effects unknown) and two CpG sequences; 120704 and ODN 2395 (known to activate platelets). Human cord bloodderived megakaryocytes were treated with these ASO to study their effects on proplatelet production. Platelet activation (determined by surface Pselectin) and platelet-leukocyte aggregates were analyzed in ASO-treated blood from healthy human volunteers. None of the ASO inhibited proplatelet production by human megakaryocytes. All the ASO were shown to bind to the platelet receptor glycoprotein VI (KD ~0.2-1.5 mM). CpG ASO had the highest affinity to glycoprotein VI, the most potent platelet-activating effects and led to the greatest formation of platelet-leukocyte aggregates. 2'MOE ASO 487660 had no detectable platelet effects, while 2'MOE ASOs 104838 and 501861 triggered moderate platelet activation and SYKdependent formation of platelet-leukocyte aggregates. Donors with higher platelet glycoprotein VI levels had greater ASO-induced platelet activation. Sequence-dependent ASO-induced platelet activation and platelet-leukocyte aggregates may explain phenotype 1 (moderate drops in platelet count). Platelet glycoprotein VI levels could be useful as a screening tool to identify patients at higher risk of ASO-induced platelet side effects.


Assuntos
Plaquetas , Oligonucleotídeos Antissenso , Humanos , Leucócitos , Oligonucleotídeos Antissenso/genética , Oligonucleotídeos Antissenso/farmacologia , Oligonucleotídeos Antissenso/uso terapêutico , Ativação Plaquetária , Contagem de Plaquetas
2.
Blood Adv ; 5(7): 1977-1990, 2021 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-33843988

RESUMO

The production of in vitro-derived platelets has great potential for transfusion medicine. Here, we build on our experience in the forward programming (FoP) of human pluripotent stem cells (hPSCs) to megakaryocytes (MKs) and address several aspects of the complex challenges to bring this technology to the bedside. We first identify clinical-grade hPSC lines that generate MKs efficiently. We design a bespoke media to maximize both production and maturity of MKs and improve platelet output. Crucially, we transition the lentiviral-based FoP of hPSCs to a nonviral inducible system. We also show how small molecules promote a definitive hematopoiesis phenotype during the differentiation process, thereby increasing the quality of the final product. Finally, we generate platelets using a bioreactor designed to reproduce the physical cues that promote platelet production in the bone marrow. We show that these platelets are able to contribute to both thrombus formation in vitro and have a hemostatic effect in thrombocytopenic mice in vivo.


Assuntos
Megacariócitos , Células-Tronco Pluripotentes , Animais , Reatores Biológicos , Plaquetas , Camundongos , Trombopoese
3.
Blood Adv ; 3(20): 3092-3098, 2019 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-31648331

RESUMO

In addition to their primary roles in hemostasis and thrombosis, platelets participate in many other physiological and pathological processes, including, but not limited to inflammation, wound healing, tumor metastasis, and angiogenesis. Among their most interesting properties is the large number of bioactive proteins stored in their α-granules, the major storage granule of platelets. We previously showed that platelets differentially package pro- and antiangiogenic proteins in distinct α-granules that undergo differential release upon platelet activation. Nevertheless, how megakaryocytes achieve differential packaging is not fully understood. In this study, we use a mouse megakaryocyte culture system and endocytosis assay to establish when and where differential packaging occurs during platelet production. Live cell microscopy of primary mouse megakaryocytes incubated with fluorescently conjugated fibrinogen and endostatin showed differential endocytosis and packaging of the labeled proteins into distinct α-granule subpopulations. Super-resolution microscopy of mouse proplatelets and human whole-blood platelet α-granules simultaneously probed for 2 different membrane proteins (VAMP-3 and VAMP-8), and multiple granular content proteins (bFGF, ENDO, TSP, VEGF) confirmed differential packaging of protein contents into α-granules. These data suggest that megakaryocytes differentially sort and package α-granule contents, which are preserved as α-granule subpopulations during proplatelet extension and platelet production.


Assuntos
Plaquetas/metabolismo , Grânulos Citoplasmáticos/metabolismo , Megacariócitos/metabolismo , Animais , Transporte Biológico , Biomarcadores , Diferenciação Celular , Imunofluorescência , Humanos , Megacariócitos/citologia , Camundongos , Trombopoese
4.
Trends Biochem Sci ; 42(5): 327-329, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28385393

RESUMO

Translating basic research discoveries through entrepreneurship must be scientist driven and institutionally supported to be successful (not the other way around). Here, we describe why scientists should engage in entrepreneurship, where institutional support for scientist-founders falls short, and how these challenges can be overcome.


Assuntos
Empreendedorismo , Pesquisadores
5.
J Clin Invest ; 127(5): 1714-1724, 2017 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-28375155

RESUMO

The growth factor receptor Kit is involved in hematopoietic and nonhematopoietic development. Mice bearing Kit defects lack mast cells; however, strains bearing different Kit alleles exhibit diverse phenotypes. Herein, we investigated factors underlying differential sensitivity to IgG-mediated arthritis in 2 mast cell-deficient murine lines: KitWsh/Wsh, which develops robust arthritis, and KitW/Wv, which does not. Reciprocal bone marrow transplantation between KitW/Wv and KitWsh/Wsh mice revealed that arthritis resistance reflects a hematopoietic defect in addition to mast cell deficiency. In KitW/Wv mice, restoration of susceptibility to IgG-mediated arthritis was neutrophil independent but required IL-1 and the platelet/megakaryocyte markers NF-E2 and glycoprotein VI. In KitW/Wv mice, platelets were present in numbers similar to those in WT animals and functionally intact, and transfer of WT platelets did not restore arthritis susceptibility. These data implicated a platelet-independent role for the megakaryocyte, a Kit-dependent lineage that is selectively deficient in KitW/Wv mice. Megakaryocytes secreted IL-1 directly and as a component of circulating microparticles, which activated synovial fibroblasts in an IL-1-dependent manner. Transfer of WT but not IL-1-deficient megakaryocytes restored arthritis susceptibility to KitW/Wv mice. These findings identify functional redundancy among Kit-dependent hematopoietic lineages and establish an unanticipated capacity of megakaryocytes to mediate IL-1-driven systemic inflammatory disease.


Assuntos
Artrite Experimental , Megacariócitos , Proteínas Proto-Oncogênicas c-kit , Membrana Sinovial , Animais , Artrite Experimental/genética , Artrite Experimental/imunologia , Artrite Experimental/patologia , Fibroblastos/imunologia , Fibroblastos/patologia , Imunoglobulina G/imunologia , Interleucina-1/genética , Interleucina-1/imunologia , Mastócitos/imunologia , Mastócitos/patologia , Megacariócitos/imunologia , Megacariócitos/patologia , Camundongos , Camundongos Knockout , Subunidade p45 do Fator de Transcrição NF-E2/genética , Subunidade p45 do Fator de Transcrição NF-E2/imunologia , Glicoproteínas da Membrana de Plaquetas/genética , Glicoproteínas da Membrana de Plaquetas/imunologia , Proteínas Proto-Oncogênicas c-kit/genética , Proteínas Proto-Oncogênicas c-kit/imunologia , Membrana Sinovial/imunologia , Membrana Sinovial/patologia
6.
Platelets ; 28(5): 472-477, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28112988

RESUMO

Platelets, responsible for clot formation and blood vessel repair, are produced by megakaryocytes in the bone marrow. Platelets are critical for hemostasis and wound healing, and are often provided following surgery, chemotherapy, and major trauma. Despite their importance, platelets today are derived exclusively from human volunteer donors. They have a shelf life of just five days, making platelet shortages common during long weekends, civic holidays, bad weather, and during major emergencies when platelets are needed most. Megakaryocytes in the bone marrow generate platelets by extruding long cytoplasmic extensions called proplatelets through gaps/fenestrations in blood vessels. Proplatelets serve as assembly lines for platelet production by sequentially releasing platelets and large discoid-shaped platelet intermediates called preplatelets into the circulation. Recent advances in platelet bioreactor development have aimed to mimic the key physiological characteristics of bone marrow, including extracellular matrix composition/stiffness, blood vessel architecture comprising tissue-specific microvascular endothelium, and shear stress. Nevertheless, how complex interactions within three-dimensional (3D) microenvironments regulate thrombopoiesis remains poorly understood, and the technical challenges associated with designing and manufacturing biomimetic microfluidic devices are often under-appreciated and under-reported. We have previously reviewed the major cell culture, platelet quality assessment, and regulatory roadblocks that must be overcome to make human platelet production possible for clinical use [1]. This review builds on our previous manuscript by: (1) detailing the historical evolution of platelet bioreactor design to recapitulate native platelet production ex vivo, and (2) identifying the associated challenges that still need to be addressed to further scale and validate these devices for commercial application. While platelets are among the first cells whose ex vivo production is spearheading major engineering advancements in microfluidic design, the resulting discoveries will undoubtedly extend to the production of other human tissues. This work is critical to identify the physiological characteristics of relevant 3D tissue-specific microenvironments that drive cell differentiation and elaborate upon how these are disrupted in disease. This is a burgeoning field whose future will define not only the ex vivo production of platelets and development of targeted therapies for thrombocytopenia, but the promise of regenerative medicine for the next century.


Assuntos
Reatores Biológicos , Plaquetas , Técnicas de Cultura de Células , Megacariócitos , Animais , Plaquetas/citologia , Plaquetas/metabolismo , Técnicas de Cultura de Células/instrumentação , Técnicas de Cultura de Células/métodos , Humanos , Megacariócitos/citologia , Megacariócitos/metabolismo
7.
Blood ; 127(11): 1493-501, 2016 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-26755713

RESUMO

Lysyl oxidase (LOX) is overexpressed in various pathologies associated with thrombosis, such as arterial stenosis and myeloproliferative neoplasms (MPNs). LOX is elevated in the megakaryocytic lineage of mouse models of MPNs and in patients with MPNs. To gain insight into the role of LOX in thrombosis and platelet function without compounding the influences of other pathologies, transgenic mice expressing LOX in wild-type megakaryocytes and platelets (Pf4-Lox(tg/tg)) were generated. Pf4-Lox(tg/tg) mice had a normal number of platelets; however, time to vessel occlusion after endothelial injury was significantly shorter in Pf4-Lox(tg/tg) mice, indicating a higher propensity for thrombus formation in vivo. Exploring underlying mechanisms, we found that Pf4-Lox(tg/tg) platelets adhere better to collagen and have greater aggregation response to lower doses of collagen compared with controls. Platelet activation in response to the ligand for collagen receptor glycoprotein VI (cross-linked collagen-related peptide) was unaffected. However, the higher affinity of Pf4-Lox(tg/tg) platelets to the collagen sequence GFOGER implies that the collagen receptor integrin α2ß1 is affected by LOX. Taken together, our findings demonstrate that LOX enhances platelet activation and thrombosis.


Assuntos
Plaquetas/efeitos dos fármacos , Colágeno/farmacologia , Ativação Plaquetária/fisiologia , Proteína-Lisina 6-Oxidase/fisiologia , Trombofilia/enzimologia , Animais , Plaquetas/citologia , Lesões das Artérias Carótidas/complicações , Trombose das Artérias Carótidas/etiologia , Integrina alfa2beta1/fisiologia , Megacariócitos/enzimologia , Camundongos , Camundongos Transgênicos , Fragmentos de Peptídeos/farmacologia , Adesividade Plaquetária/genética , Adesividade Plaquetária/fisiologia , Agregação Plaquetária/efeitos dos fármacos , Agregação Plaquetária/genética , Fator Plaquetário 4/genética , Regiões Promotoras Genéticas , Proteína-Lisina 6-Oxidase/genética , Ratos , Trombofilia/genética
9.
Blood ; 125(5): 860-8, 2015 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-25411426

RESUMO

Bone marrow megakaryocytes produce platelets by extending long cytoplasmic protrusions, designated proplatelets, into sinusoidal blood vessels. Although microtubules are known to regulate platelet production, the underlying mechanism of proplatelet elongation has yet to be resolved. Here we report that proplatelet formation is a process that can be divided into repetitive phases (extension, pause, and retraction), as revealed by differential interference contrast and fluorescence loss after photoconversion time-lapse microscopy. Furthermore, we show that microtubule sliding drives proplatelet elongation and is dependent on cytoplasmic dynein under static and physiological shear stress by using fluorescence recovery after photobleaching in proplatelets with fluorescence-tagged ß1-tubulin. A refined understanding of the specific mechanisms regulating platelet production will yield strategies to treat patients with thrombocythemia or thrombocytopenia.


Assuntos
Plaquetas/metabolismo , Dineínas do Citoplasma/metabolismo , Megacariócitos/metabolismo , Microtúbulos/metabolismo , Tubulina (Proteína)/metabolismo , Animais , Plaquetas/citologia , Diferenciação Celular , Citoplasma/metabolismo , Dineínas do Citoplasma/genética , Recuperação de Fluorescência Após Fotodegradação , Expressão Gênica , Mecanotransdução Celular , Megacariócitos/citologia , Camundongos , Microscopia de Interferência , Microtúbulos/química , Cultura Primária de Células , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Estresse Mecânico , Trombopoese/genética , Tubulina (Proteína)/genética
10.
Trends Biochem Sci ; 39(12): 571-3, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25458606

RESUMO

An entrepreneurial movement within science strives to invert the classical trajectory of academic research careers by positioning trainees at the apex of burgeoning industries. Young scientists today have nothing to lose and everything to gain by pursuing this 'third road', and academic institutes and established companies only stand to benefit from supporting this emerging movement of discovery research with economic purpose.


Assuntos
Bioquímica , Escolha da Profissão , Educação de Pós-Graduação , Empreendedorismo , Bioquímica/economia , Bioquímica/educação , Canadá , Educação de Pós-Graduação/economia , Educação de Pós-Graduação/tendências , Humanos , Salários e Benefícios , Estados Unidos , Recursos Humanos
11.
Stem Cell Reports ; 3(5): 817-31, 2014 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-25418726

RESUMO

Human induced pluripotent stem cells (iPSCs) provide a potentially replenishable source for the production of transfusable platelets. Here, we describe a method to generate megakaryocytes (MKs) and functional platelets from iPSCs in a scalable manner under serum/feeder-free conditions. The method also permits the cryopreservation of MK progenitors, enabling a rapid "surge" capacity when large numbers of platelets are needed. Ultrastructural/morphological analyses show no major differences between iPSC platelets and human blood platelets. iPSC platelets form aggregates, lamellipodia, and filopodia after activation and circulate in macrophage-depleted animals and incorporate into developing mouse thrombi in a manner identical to human platelets. By knocking out the ß2-microglobulin gene, we have generated platelets that are negative for the major histocompatibility antigens. The scalable generation of HLA-ABC-negative platelets from a renewable cell source represents an important step toward generating universal platelets for transfusion as well as a potential strategy for the management of platelet refractoriness.


Assuntos
Plaquetas/citologia , Diferenciação Celular , Células-Tronco Pluripotentes Induzidas/citologia , Megacariócitos/citologia , Animais , Antígenos CD34/metabolismo , Plaquetas/metabolismo , Plaquetas/ultraestrutura , Técnicas de Cultura de Células/métodos , Proliferação de Células , Células Cultivadas , Técnicas de Inativação de Genes , Antígenos HLA/genética , Antígenos HLA/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/ultraestrutura , Leucossialina/metabolismo , Masculino , Megacariócitos/metabolismo , Megacariócitos/ultraestrutura , Camundongos Endogâmicos NOD , Camundongos SCID , Microscopia Eletrônica , Microscopia de Fluorescência , Molécula-1 de Adesão Celular Endotelial a Plaquetas/metabolismo , Transfusão de Plaquetas/métodos , Reprodutibilidade dos Testes , Transplante Heterólogo , Microglobulina beta-2/genética , Microglobulina beta-2/metabolismo
12.
Cell ; 158(5): 1033-1044, 2014 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-25171405

RESUMO

Although tyrosine phosphorylation of extracellular proteins has been reported to occur extensively in vivo, no secreted protein tyrosine kinase has been identified. As a result, investigation of the potential role of extracellular tyrosine phosphorylation in physiological and pathological tissue regulation has not been possible. Here, we show that VLK, a putative protein kinase previously shown to be essential in embryonic development, is a secreted protein kinase, with preference for tyrosine, that phosphorylates a broad range of secreted and ER-resident substrate proteins. We find that VLK is rapidly and quantitatively secreted from platelets in response to stimuli and can tyrosine phosphorylate coreleased proteins utilizing endogenous as well as exogenous ATP sources. We propose that discovery of VLK activity provides an explanation for the extensive and conserved pattern of extracellular tyrosine phosphophorylation seen in vivo, and extends the importance of regulated tyrosine phosphorylation into the extracellular environment.


Assuntos
Plaquetas/enzimologia , Embrião de Mamíferos/enzimologia , Proteínas Quinases/metabolismo , Proteínas Tirosina Quinases/metabolismo , Sequência de Aminoácidos , Animais , Desenvolvimento Embrionário , Glicosilação , Humanos , Camundongos , Dados de Sequência Molecular , Fosforilação , Proteínas Quinases/química , Proteínas Quinases/genética , Processamento de Proteína Pós-Traducional , Estrutura Terciária de Proteína , Proteínas Tirosina Quinases/química , Via Secretória
14.
Br J Haematol ; 165(2): 227-36, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24499183

RESUMO

Platelets are essential for haemostasis, and thrombocytopenia (platelet counts <150 × 10(9) /l) is a major clinical problem encountered across a number of conditions, including immune thrombocytopenic purpura, myelodysplastic syndromes, chemotherapy, aplastic anaemia, human immunodeficiency virus infection, complications during pregnancy and delivery, and surgery. Circulating blood platelets are specialized cells that function to prevent bleeding and minimize blood vessel injury. Platelets circulate in their quiescent form, and upon stimulation, activate to release their granule contents and spread on the affected tissue to create a physical barrier that prevents blood loss. The current model of platelet formation states that large progenitor cells in the bone marrow, called megakaryocytes, release platelets by extending long, branching processes, designated proplatelets, into sinusoidal blood vessels. This review will focus on different factors that impact megakaryocyte development, proplatelet formation and platelet release. It will highlight recent studies on thrombopoeitin-dependent megakaryocyte maturation, endomitosis and granule formation, cytoskeletal contributions to proplatelet formation, the role of apoptosis, and terminal platelet formation and release.


Assuntos
Megacariócitos/fisiologia , Trombopoese/fisiologia , Actinas/metabolismo , Animais , Apoptose , Plaquetas/citologia , Plaquetas/metabolismo , Membrana Celular/metabolismo , Humanos , Microtúbulos/metabolismo , Proteína Quinase C/metabolismo , Proteínas rho de Ligação ao GTP/metabolismo
15.
Blood ; 124(12): 1857-67, 2014 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-25606631

RESUMO

Platelet transfusions total >2.17 million apheresis-equivalent units per year in the United States and are derived entirely from human donors, despite clinically significant immunogenicity, associated risk of sepsis, and inventory shortages due to high demand and 5-day shelf life. To take advantage of known physiological drivers of thrombopoiesis, we have developed a microfluidic human platelet bioreactor that recapitulates bone marrow stiffness, extracellular matrix composition,micro-channel size, hemodynamic vascular shear stress, and endothelial cell contacts, and it supports high-resolution live-cell microscopy and quantification of platelet production. Physiological shear stresses triggered proplatelet initiation, reproduced ex vivo bone marrow proplatelet production, and generated functional platelets. Modeling human bone marrow composition and hemodynamics in vitro obviates risks associated with platelet procurement and storage to help meet growing transfusion needs.


Assuntos
Reatores Biológicos , Plaquetas , Técnicas Analíticas Microfluídicas , Animais , Materiais Biomiméticos , Plaquetas/citologia , Plaquetas/fisiologia , Desenho de Equipamento , Humanos , Megacariócitos/citologia , Megacariócitos/fisiologia , Camundongos , Modelos Biológicos , Transfusão de Plaquetas , Trombopoese
16.
Am J Hum Genet ; 93(5): 906-14, 2013 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-24119684

RESUMO

We used exome sequencing to identify mutations in sideroflexin 4 (SFXN4) in two children with mitochondrial disease (the more severe case also presented with macrocytic anemia). SFXN4 is an uncharacterized mitochondrial protein that localizes to the mitochondrial inner membrane. sfxn4 knockdown in zebrafish recapitulated the mitochondrial respiratory defect observed in both individuals and the macrocytic anemia with megaloblastic features of the more severe case. In vitro and in vivo complementation studies with fibroblasts from the affected individuals and zebrafish demonstrated the requirement of SFXN4 for mitochondrial respiratory homeostasis and erythropoiesis. Our findings establish mutations in SFXN4 as a cause of mitochondriopathy and macrocytic anemia.


Assuntos
Anemia Macrocítica/genética , Proteínas de Membrana/genética , Doenças Mitocondriais/genética , Adolescente , Animais , Criança , Eritropoese/genética , Exoma , Feminino , Técnicas de Silenciamento de Genes , Humanos , Proteínas Mitocondriais/genética , Mutação , Peixe-Zebra/genética
17.
Trends Mol Med ; 19(10): 583-5, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23953478

RESUMO

Animating complex biological processes contextualizes them within their underlying physiology, identifies gaps in our mechanistic understanding, affirms the importance of continued research, and provides a bridge between academic scientists and the general public. Here, two videos illustrate the clinical value of and translate state-of-the-art research in platelet production.


Assuntos
Recursos Audiovisuais , Plaquetas/fisiologia , Comunicação , Humanos
18.
Blood ; 122(7): 1305-11, 2013 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-23838351

RESUMO

During thrombopoiesis, megakaroycytes undergo extensive cytoskeletal remodeling to form proplatelet extensions that eventually produce mature platelets. Proplatelet formation is a tightly orchestrated process that depends on dynamic regulation of both tubulin reorganization and Rho-associated, coiled-coil containing protein kinase/RhoA activity. A disruption in tubulin dynamics or RhoA activity impairs proplatelet formation and alters platelet morphology. We previously observed that protein kinase Cepsilon (PKCε), a member of the protein kinase C family of serine/threonine-kinases, expression varies during human megakaryocyte differentiation and modulates megakaryocyte maturation and platelet release. Here we used an in vitro model of murine platelet production to investigate a potential role for PKCε in proplatelet formation. By immunofluorescence we observed that PKCε colocalizes with α/ß-tubulin in specific areas of the marginal tubular-coil in proplatelets. Moreover, we found that PKCε expression escalates during megakarocyte differentiation and remains elevated in proplatelets, whereas the active form of RhoA is substantially downregulated in proplatelets. PKCε inhibition resulted in lower proplatelet numbers and larger diameter platelets in culture as well as persistent RhoA activation. Finally, we demonstrate that pharmacological inhibition of RhoA is capable of reversing the proplatelet defects mediated by PKCε inhibition. Collectively, these data indicate that by regulating RhoA activity, PKCε is a critical mediator of mouse proplatelet formation in vitro.


Assuntos
Plaquetas/citologia , Megacariócitos/citologia , Proteína Quinase C-épsilon/metabolismo , Trombopoese/fisiologia , Tubulina (Proteína)/metabolismo , Proteína rhoA de Ligação ao GTP/antagonistas & inibidores , Animais , Plaquetas/metabolismo , Western Blotting , Diferenciação Celular , Células Cultivadas , Feto/citologia , Feto/metabolismo , Citometria de Fluxo , Imunofluorescência , Humanos , Fígado/citologia , Fígado/metabolismo , Megacariócitos/metabolismo , Camundongos , RNA Interferente Pequeno/genética , Proteína rhoA de Ligação ao GTP/genética , Proteína rhoA de Ligação ao GTP/metabolismo
19.
Blood ; 121(1): 188-96, 2013 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-23160460

RESUMO

Wnt signaling is involved in numerous aspects of vertebrate development and homeostasis, including the formation and function of blood cells. Here, we show that canonical and noncanonical Wnt signaling pathways are present and functional in megakaryocytes (MKs), with several Wnt effectors displaying MK-restricted expression. Using the CHRF288-11 cell line as a model for human MKs, the canonical Wnt3a signal was found to induce a time and dose-dependent increase in ß-catenin expression. ß-catenin accumulation was inhibited by the canonical antagonist dickkopf-1 (DKK1) and by the noncanonical agonist Wnt5a. Whole genome expression analysis demonstrated that Wnt3a and Wnt5a regulated distinct patterns of gene expression in MKs, and revealed a further interplay between canonical and noncanonical Wnt pathways. Fetal liver cells derived from low-density-lipoprotein receptor-related protein 6-deficient mice (LRP6(-/-)), generated dramatically reduced numbers of MKs in culture of lower ploidy (2N and 4N) than wild-type controls, implicating LRP6-dependent Wnt signaling in MK proliferation and maturation. Finally, in wild-type mature murine fetal liver-derived MKs, Wnt3a potently induced proplatelet formation, an effect that could be completely abrogated by DKK1. These data identify novel extrinsic regulators of proplatelet formation, and reveal a profound role for Wnt signaling in platelet production.


Assuntos
Megacariócitos/citologia , Trombopoese/fisiologia , Via de Sinalização Wnt/fisiologia , Animais , Plaquetas/citologia , Linhagem Celular , Células Cultivadas/efeitos dos fármacos , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/farmacologia , Fígado/embriologia , Proteína-6 Relacionada a Receptor de Lipoproteína de Baixa Densidade/deficiência , Proteína-6 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética , Megacariócitos/efeitos dos fármacos , Megacariócitos/metabolismo , Camundongos , Camundongos Knockout , Proteínas Recombinantes/farmacologia , Trombopoese/genética , Proteínas Wnt/farmacologia , Proteína Wnt3A/farmacologia , beta Catenina/biossíntese , beta Catenina/genética
20.
Blood ; 120(24): 4859-68, 2012 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-22972982

RESUMO

We recently identified 68 genomic loci where common sequence variants are associated with platelet count and volume. Platelets are formed in the bone marrow by megakaryocytes, which are derived from hematopoietic stem cells by a process mainly controlled by transcription factors. The homeobox transcription factor MEIS1 is uniquely transcribed in megakaryocytes and not in the other lineage-committed blood cells. By ChIP-seq, we show that 5 of the 68 loci pinpoint a MEIS1 binding event within a group of 252 MK-overexpressed genes. In one such locus in DNM3, regulating platelet volume, the MEIS1 binding site falls within a region acting as an alternative promoter that is solely used in megakaryocytes, where allelic variation dictates different levels of a shorter transcript. The importance of dynamin activity to the latter stages of thrombopoiesis was confirmed by the observation that the inhibitor Dynasore reduced murine proplatelet for-mation in vitro.


Assuntos
Plaquetas/metabolismo , Dinamina III/genética , Genoma Humano/genética , Proteínas de Homeodomínio/genética , Megacariócitos/metabolismo , Proteínas de Neoplasias/genética , Regiões Promotoras Genéticas/genética , Animais , Sítios de Ligação/genética , Plaquetas/efeitos dos fármacos , Linhagem Celular Tumoral , Linhagem da Célula/genética , Células Cultivadas , Imunoprecipitação da Cromatina , Expressão Gênica , Variação Genética , Proteínas de Homeodomínio/metabolismo , Humanos , Hidrazonas/farmacologia , Camundongos , Proteína Meis1 , Proteínas de Neoplasias/metabolismo , Contagem de Plaquetas , Polimorfismo de Nucleotídeo Único , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Análise de Sequência de DNA , Sítio de Iniciação de Transcrição , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...