Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; : e2402069, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38815130

RESUMO

Dynamic terahertz devices are vital for the next generation of wireless communication, sensing, and non-destructive imaging technologies. Metasurfaces have emerged as a paradigm-shifting platform, offering varied functionalities, miniaturization, and simplified fabrication compared to their 3D counterparts. However, the presence of in-plane mirror symmetry and reduced degree of freedom impose fundamental limitations on achieving advanced chiral response, beamforming, and reconfiguration capabilities. In this work, a platform composed of electrically actuated resonators that can be colossally reconfigured between planar and 3D geometries is demonstrated. To illustrate the platform, metadevices with 3D Split Ring Resonators are fabricated, wherein two counteracting driving forces are combined: i) folding induced by stress mismatch, which enables non-volatile state design and ii) unfolding triggered by the strain associated with insulator-to-metal transition in VO2, which facilitates volatile structural reconfiguration. This large structural reconfiguration space allows for resonance mode switching, widely tunable magnetic and electric polarizabilities, and increased frequency agility. Moreover, the unique properties of VO2, such as the hysteretic nature of its phase transition is harnessed to demonstrate a multi-state memory. Therefore, these VO2 integrated metadevices are highly attractive for the realization of 6G communication devices such as reconfigurable intelligent surfaces, holographic beam formers, and spatial light modulators.

2.
Nanoscale ; 13(26): 11561-11567, 2021 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-34190260

RESUMO

Molybdenum disulfide (MoS2) has attracted significant attention due to its good charge carrier mobility, high on/off ratio in field-effect transistors and novel layer-dependent band structure, with potential applications in modern electronic, photovoltaic and valleytronic devices. Despite these advantages, its thermal transport property has often been neglected until recently. In this work, we probe phonon transport in few-layer MoS2 flakes with various point defect concentrations enabled by helium ion (He+) irradiation. For the first time, we experimentally show that Mo-vacancies greatly impede phonon transport compared to S-vacancies, resulting in a larger reduction of thermal conductivity. Furthermore, Raman characterization shows that the in-plane Raman-sensitive peak E2g1 was red-shifted with increasing defect concentration, corresponding to the gradual damage of the in-plane crystalline networks and the gradual reduction in the measured thermal conductivity. Our work provides a practical approach for atomic-level engineering of phonon transport in two-dimensional (2D) layered materials by selectively removing elements, thus holding potential applications in designing thermal devices based on various emerging 2D materials.

3.
Proc Natl Acad Sci U S A ; 117(25): 13929-13936, 2020 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-32522877

RESUMO

Local impurity states arising from atomic vacancies in two-dimensional (2D) nanosheets are predicted to have a profound effect on charge transport due to resonant scattering and can be used to manipulate thermoelectric properties. However, the effects of these impurities are often masked by external fluctuations and turbostratic interfaces; therefore, it is challenging to probe the correlation between vacancy impurities and thermoelectric parameters experimentally. In this work, we demonstrate that n-type molybdenum disulfide (MoS2) supported on hexagonal boron nitride (h-BN) substrate reveals a large anomalous positive Seebeck coefficient with strong band hybridization. The presence of vacancies on MoS2 with a large conduction subband splitting of 50.0 ± 5.0 meV may contribute to Kondo insulator-like properties. Furthermore, by tuning the chemical potential, the thermoelectric power factor can be enhanced by up to two orders of magnitude to 50 mW m-1 K-2 Our work shows that defect engineering in 2D materials provides an effective strategy for controlling band structure and tuning thermoelectric transport.

4.
Nanotechnology ; 31(22): 225702, 2020 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-32053806

RESUMO

The thermal transport of monolayer MoS2, grown by chemical vapor deposition (CVD) method, was studied in this work. A novel approach was developed to transfer monolayer MoS2 onto suspended microelectrothermal system device, where a nano-manipulator in a scanning electron microscope was employed to accomplish the feat. This nano-manipulator-assisted transferring gives a high sample yield with relatively good sample quality compared to the traditional wet/dry transfer methods. Temperature-dependent thermal conductivity of monolayer MoS2 was measured by suspended-pads thermal bridge technique, with thermal conductivity value slightly lower than the exfoliated samples due to the phonon-defects scattering for CVD grown samples. Further extension of the current transfer method was demonstrated on few-layer graphite, where suspended graphite flakes that were free of surface ripples and with high thermal conductance were shown.

5.
Sci Rep ; 10(1): 821, 2020 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-31964924

RESUMO

While numerous studies have been carried out to characterize heat transport behaviours in various crystalline silicon nanostructures, the corresponding characteristics of amorphous one-dimension system have not been well understood. In this study, we amorphize crystalline silicon by means of helium-ion irradiation, enabling the formation of a completely amorphous region of well-defined length along a single silicon nanowire. Heat conduction across both amorphous region and its crystalline/amorphous interface is characterized by an electron beam heating technique with high measurement spatial resolution. The measured thermal conductivity of the amorphous silicon nanowire appears length-independence with length ranging from ~30 nm to few hundreds nm, revealing the fully diffusons governed heat conduction. Moreover, unlike the size-dependent interfacial thermal conductance at the interface between two one-dimensional crystalline materials, here for the first time, we observe that the interface thermal conductance across the amorphous/crystalline silicon interface is nearly independent of the length of the amorphous region. This unusual independence is further supported by molecular dynamics (MD) simulation in our work. Our results provide experimental and theoretical insight into the nature of interaction between heat carriers in crystalline and amorphous nano-structures and shed new light to design innovative silicon nanowire based devices.

6.
ACS Appl Mater Interfaces ; 11(38): 35438-35443, 2019 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-31476859

RESUMO

Atomic layer deposition (ALD) of ultrathin dielectric films on two-dimensional (2D) materials for electronic device applications remains one of the key challenges because of the lack of dangling bonds on the 2D material surface. In this work, a new technique to deposit uniform and high-quality Al2O3 films with thickness down to 1.5 nm on MoS2 is introduced. By treating the surface using water plasma prior to the ALD process, hydroxyl groups are introduced to the MoS2 surface, facilitating the chemisorption of trimethylaluminum in a conventional water-based ALD system. Raman and X-ray photoelectron spectroscopy measurements show that the water plasma treatment does not induce noticeable material degradation. The deposited Al2O3 films show excellent device-related electrical performance characteristics, including low interface trap density and outstanding gate controllability.

7.
ACS Appl Mater Interfaces ; 11(27): 24404-24411, 2019 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-31199625

RESUMO

Structural defects in two-dimensional transition-metal dichalcogenides can significantly modify the material properties. Previous studies have shown that chalcogen defects can be created by physical sputtering, but the energetic ions can potentially displace transition-metal atoms at the same time, leading to ambiguous results and in some cases, degradation of material quality. In this work, selective sputtering of S atoms in monolayer MoS2 without damaging the Mo sublattice is demonstrated with low-energy helium plasma treatment. Based on X-ray photoelectron spectroscopy analysis, wide-range tuning of S defect concentration is achieved by controlling the ion energy and sputtering time. Furthermore, characterization with scanning transmission electron microscopy confirms that by keeping the ion energy low, the Mo sublattice remains intact. The properties of MoS2 at different defect concentrations are also characterized. In situ device measurement shows that the flake can be tuned from a semiconducting to metallic-like behavior by introducing S defects due to the creation of mid-gap states. When the defective MoS2 is exposed to air, the S defects are soon passivated, with oxygen atoms filling the defect sites.

8.
Adv Mater ; 30(50): e1804928, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30307655

RESUMO

Black phosphorus (BP) has emerged as a promising candidate for next-generation electronics and optoelectronics among the 2D family materials due to its extraordinary electrical/optical/optoelectronic properties. Interestingly, BP shows strong anisotropic transport behavior because of its puckered honeycomb structure. Previous studies have demonstrated the thermal transport anisotropy of BP and theoretically attribute this to the anisotropy in both the phonon dispersion relation and the phonon relaxation time. However, the exact origin of such strong anisotropy lacks clarity and has yet to be proven experimentally. Here, the thermal transport anisotropy of BP nanoribbons is probed by an electron beam technique. Direct evidence is provided that the origin of this anisotropy is dominated by the anisotropic phonon group velocity, verified by Young's modulus measurements along different directions. It turns out that the ratio of the thermal conductivity between zigzag (ZZ) and armchair (AC) ribbons is almost same as that of the corresponding Young modulus values. The results from first-principles calculation are consistent with this experimental observation, where the anisotropic phonon group velocity between ZZ and AC is shown. These results provide fundamental insight into the anisotropic thermal transport in low-symmetry crystals.

9.
Sci Rep ; 7(1): 16714, 2017 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-29196652

RESUMO

The stronger photoluminescence (PL) in chemical vapor deposition (CVD) grown monolayer MoS2 has been attributed to its high crystal quality compared with that in mechanically exfoliated (ME) crystal, which is contrary to the cognition that the ME crystal usually have better crystal quality than that of CVD grown one and it is expected with a better optical quality. In this report, the reason of abnormally strong PL spectra in CVD grown monolayer crystal is systematically investigated by studying the in-situ opto-electrical exploration at various environments for both of CVD and ME samples. High resolution transmission electron microscopy is used to investigate their crystal qualities. The stronger PL in CVD grown crystal is due to the high p-doping effect of adsorbates induced rebalance of exciton/trion emission. The first principle calculations are carried out to explore the interaction between adsorbates in ambient and defects sites in MoS2, which is consistent to the experimental phenomenon and further confirm our proposed mechanisms.

10.
Nat Commun ; 8: 15919, 2017 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-28653663

RESUMO

The ability to engineer the thermal conductivity of materials allows us to control the flow of heat and derive novel functionalities such as thermal rectification, thermal switching and thermal cloaking. While this could be achieved by making use of composites and metamaterials at bulk length-scales, engineering the thermal conductivity at micro- and nano-scale dimensions is considerably more challenging. In this work, we show that the local thermal conductivity along a single Si nanowire can be tuned to a desired value (between crystalline and amorphous limits) with high spatial resolution through selective helium ion irradiation with a well-controlled dose. The underlying mechanism is understood through molecular dynamics simulations and quantitative phonon-defect scattering rate analysis, where the behaviour of thermal conductivity with dose is attributed to the accumulation and agglomeration of scattering centres at lower doses. Beyond a threshold dose, a crystalline-amorphous transition was observed.

11.
Sci Rep ; 7: 43886, 2017 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-28262778

RESUMO

Two-dimensional (2D) materials and their corresponding van der Waals heterostructures have drawn tremendous interest due to their extraordinary electrical and optoelectronic properties. Insulating 2D hexagonal boron nitride (h-BN) with an atomically smooth surface has been widely used as a passivation layer to improve carrier transport for other 2D materials, especially for Transition Metal Dichalcogenides (TMDCs). However, heat flow at the interface between TMDCs and h-BN, which will play an important role in thermal management of various electronic and optoelectronic devices, is not yet understood. In this paper, for the first time, the interface thermal conductance (G) at the MoS2/h-BN interface is measured by Raman spectroscopy, and the room-temperature value is (17.0 ± 0.4) MW · m-2K-1. For comparison, G between graphene and h-BN is also measured, with a value of (52.2 ± 2.1) MW · m-2K-1. Non-equilibrium Green's function (NEGF) calculations, from which the phonon transmission spectrum can be obtained, show that the lower G at the MoS2/h-BN interface is due to the weaker cross-plane transmission of phonon modes compared to graphene/h-BN. This study demonstrates that the MoS2/h-BN interface limits cross-plane heat dissipation, and thereby could impact the design and applications of 2D devices while considering critical thermal management.

12.
ACS Nano ; 10(12): 11219-11227, 2016 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-28024386

RESUMO

Edge contact geometries are thought to yield ultralow contact resistances in most nonferromagnetic metal-graphene interfaces, owing to their large metal-graphene coupling strengths. Here, we examine the contact resistance of edge- versus surface-contacted ferromagnetic metal-graphene interfaces (i.e., nickel- and cobalt-graphene interfaces) using both single-layer and few-layer graphene. Good qualitative agreement is obtained between theory and experiment. In particular, in both theory and experiment, we observe that the contact resistance of edge-contacted ferromagnetic metal-graphene interfaces is much lower than that of surface-contacted ones, for all devices studied and especially for the single-layer graphene systems. We show that this difference in resistance is not due to differences in the metal-graphene coupling strength, which we quantify using Hamiltonian matrix elements. Instead, the larger contact resistance in surface contacts results from spin filtering at the interface, in contrast to the edge-contacted case where both spins are transmitted. Temperature-dependent resistance measurements beyond the Curie temperature TC show that the spin degree of freedom is indeed important for the experimentally measured contact resistance. These results show that it is possible to induce a large change in contact resistance by changing the temperature in the vicinity of TC.

13.
Nanotechnology ; 27(11): 115402, 2016 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-26878139

RESUMO

Studies aiming to significantly improve thermal properties, such as figure-of-merit, of silicon nanowires (SiNW) have focused on diameter reduction and surface or interface roughness control. However, the mechanism underlying thermal conductivity enhancement of roughness controlled NWs remains unclear. Here, we report a significant influence of stacking faults (SFs) on the lateral thermal conductivity of a single SiNW, using a combination of newly developed in situ spatially-resolved thermal resistance experiments and high-resolution transmission electron microscopy measurements. We used as-grown SiNWs tapered along the growth direction with progressively lower roughness and SFs density. The results clearly confirmed that both surface roughness and twins or SFs densities suppress the thermal conductivity of an individual SiNW. The results and measurement techniques presented here hold great potential for inspecting minute changes in thermal resistance along an individual SiNW, caused by induced SFs on the nanostructure, and for improving one-dimensional nanowire-based thermoelectric device performance.

14.
Adv Mater ; 27(47): 7752-8, 2015 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-26501206

RESUMO

The first multiphysical invisible sensor is theoretically and experimentally presented. An ultrathin, homogeneous, and isotropic shell is designed to simultaneously manipulate heat flux and DC current and eliminate the multiphysical perturbation, while maintaining the receiving and transmitting properties of the sensor.

15.
Nanoscale ; 7(24): 10823-31, 2015 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-26036230

RESUMO

Controlling the threshold voltage (Vth) of a field-effect transistor is important for realizing robust logic circuits. Here, we report a facile approach to achieve bidirectional Vth tuning of molybdenum disulfide (MoS2) field-effect transistors. By increasing and decreasing the amount of sulfur vacancies in the MoS2 surface, the Vth of MoS2 transistors can be left- and right-shifted, respectively. Transistors fabricated on perfect MoS2 flakes are found to exhibit a two-fold enhancement in mobility and a very positive Vth (18.5 ± 7.5 V). More importantly, our elegant hydrogen treatment is able to tune the large Vth to a small value (∼0 V) without any performance degradation simply by reducing the atomic ratio of S : Mo slightly; in other words, it creates a certain amount of sulfur vacancies in the MoS2 surface, which generate defect states in the band gap of MoS2 that mediates conduction of a MoS2 transistor in the subthreshold regime. First-principles calculations further indicate that the defect band's edge and width can be tuned according to the vacancy density. This work not only demonstrates for the first time the ease of tuning the Vth of MoS2 transistors, but also offers a process technology solution that is critical for further development of MoS2 as a mainstream electronic material.

16.
Sci Rep ; 5: 10242, 2015 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-25974383

RESUMO

The ability to design the control of heat flow has innumerable benefits in the design of electronic systems such as thermoelectric energy harvesters, solid-state lighting, and thermal imagers, where the thermal design plays a key role in performance and device reliability. In this work, we employ one identical sensu-unit with facile natural composition to experimentally realize a new class of thermal metamaterials for controlling thermal conduction (e.g., thermal concentrator, focusing/resolving, uniform heating), only resorting to positioning and locating the same unit element of sensu-shape structure. The thermal metamaterial unit and the proper arrangement of multiple identical units are capable of transferring, redistributing and managing thermal energy in a versatile fashion. It is also shown that our sensu-shape unit elements can be used in manipulating dc currents without any change in the layout for the thermal counterpart. These could markedly enhance the capabilities in thermal sensing, thermal imaging, thermal-energy storage, thermal packaging, thermal therapy, and more domains beyond.

17.
ACS Nano ; 9(1): 869-77, 2015 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-25517793

RESUMO

We report an approach to achieve low-resistance contacts to MoS2 transistors with the intrinsic performance of the MoS2 channel preserved. Through a dry transfer technique and a metal-catalyzed graphene treatment process, nickel-etched-graphene electrodes were fabricated on MoS2 that yield contact resistance as low as 200 Ω · µm. The substantial contact enhancement (∼ 2 orders of magnitude), as compared to pure nickel electrodes, is attributed to the much smaller work function of nickel-graphene electrodes, together with the fact that presence of zigzag edges in the treated graphene surface enhances tunneling between nickel and graphene. To this end, the successful fabrication of a clean graphene-MoS2 interface and a low resistance nickel-graphene interface is critical for the experimentally measured low contact resistance. The potential of using graphene as an electrode interlayer demonstrated in this work paves the way toward achieving high performance next-generation transistors.

18.
Nano Lett ; 14(7): 3840-7, 2014 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-24912079

RESUMO

Annealing is a postprocessing treatment commonly used to improve metal-graphene contacts with the assumption that resist residues sandwiched at the metal-graphene contacts are removed during annealing. Here, we examine this assumption by undertaking a systematic study to understand mechanisms that lead to the contact enhancement brought about by annealing. Using a soft shadow-mask, we fabricated residue-free metal-graphene contacts with the same dimensions as lithographically defined metal-graphene contacts on the same graphene flake. Both cases show comparable contact enhancement for nickel-graphene contacts after annealing treatment signifying that removal of resist residues is not the main factor for contact enhancement. It is found instead that carbon dissolves from graphene into the metal at chemisorbed Ni- and Co-graphene interfaces and leads to many end-contacts being formed between the metal and the dangling carbon bonds in the graphene, which contributes to much smaller contact resistance.

19.
Nat Commun ; 5: 3689, 2014 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-24736666

RESUMO

Graphene exhibits extraordinary electronic and mechanical properties, and extremely high thermal conductivity. Being a very stable atomically thick membrane that can be suspended between two leads, graphene provides a perfect test platform for studying thermal conductivity in two-dimensional systems, which is of primary importance for phonon transport in low-dimensional materials. Here we report experimental measurements and non-equilibrium molecular dynamics simulations of thermal conduction in suspended single-layer graphene as a function of both temperature and sample length. Interestingly and in contrast to bulk materials, at 300 K, thermal conductivity keeps increasing and remains logarithmically divergent with sample length even for sample lengths much larger than the average phonon mean free path. This result is a consequence of the two-dimensional nature of phonons in graphene, and provides fundamental understanding of thermal transport in two-dimensional materials.

20.
Phys Rev Lett ; 112(5): 054302, 2014 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-24580600

RESUMO

Invisibility has attracted intensive research in various communities, e.g., optics, electromagnetics, acoustics, thermodynamics, dc, etc. However, many experimental demonstrations have only been achieved by virtue of simplified approaches due to the inhomogeneous and extreme parameters imposed by the transformation-optic method, and usually require a challenging realization with metamaterials. In this Letter, we demonstrate a bilayer thermal cloak made of bulk isotropic materials, and it has been validated as an exact cloak. We experimentally verified its ability to maintain the heat front and its heat protection capabilities in a 2D proof-of-concept experiment. The robustness of this scheme is validated in both 2D (including oblique heat front incidence) and 3D configurations. The proposed scheme may open a new avenue to control the diffusive heat flow in ways inconceivable with phonons, and also inspire new alternatives to the functionalities promised by transformation optics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...