Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Genes (Basel) ; 10(12)2019 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-31817908

RESUMO

Non-syndromic cleft lip with or without cleft palate (nsCL/P) ranks among the most common human congenital malformations, and has a multifactorial background in which both exogenous and genetic risk factors act in concert. The present report describes a genome-wide association study (GWAS) involving a total of 285 nsCL/P patients and 1212 controls from the Netherlands and Belgium. Twenty of the 40 previously reported nsC/LP susceptibility loci were replicated, which underlined the validity of this sample. SNV-based analysis of the data identified an as yet unreported suggestive locus at chromosome 16p12.1 (p-value of the lead SNV: 4.17 × 10-7). This association was replicated in two of three patient/control replication series (Central European and Yemeni). Gene analysis of the GWAS data prioritized SH3PXD2A at chromosome 10q24.33 as a candidate gene for nsCL/P. To date, support for this gene as a cleft gene has been restricted to data from zebrafish and a knockout mouse model. The present GWAS was the first to implicate SH3PXD2A in non-syndromic cleft formation in humans. In summary, although performed in a relatively small sample, the present GWAS generated novel insights into nsCL/P etiology.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular/genética , Cromossomos Humanos Par 16/genética , Fenda Labial/genética , Fissura Palatina/genética , Animais , Bélgica , Cromossomos Humanos Par 10/genética , Feminino , Estudo de Associação Genômica Ampla , Humanos , Masculino , Camundongos , Camundongos Knockout , Países Baixos , Fatores de Risco , Peixe-Zebra
2.
Front Physiol ; 8: 165, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28420997

RESUMO

Palatogenesis requires a precise spatiotemporal regulation of gene expression, which is controlled by an intricate network of transcription factors and their corresponding DNA motifs. Even minor perturbations of this network may cause cleft palate, the most common congenital craniofacial defect in humans. MicroRNAs (miRNAs), a class of small regulatory non-coding RNAs, have elicited strong interest as key regulators of embryological development, and as etiological factors in disease. MiRNAs function as post-transcriptional repressors of gene expression and are therefore able to fine-tune gene regulatory networks. Several miRNAs are already identified to be involved in congenital diseases. Recent evidence from research in zebrafish and mice indicates that miRNAs are key factors in both normal palatogenesis and cleft palate formation. Here, we provide an overview of recently identified molecular mechanisms underlying palatogenesis involving specific miRNAs, and discuss how dysregulation of these miRNAs may result in cleft palate.

3.
Birth Defects Res A Clin Mol Teratol ; 106(8): 675-84, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27150573

RESUMO

BACKGROUND: Research regarding the etiology of birth defects and childhood cancer is essential to develop preventive measures, but often requires large study populations. Therefore, we established the AGORA data- and biobank in the Netherlands. In this study, we describe its rationale, design, and ongoing data collection. METHODS: Children diagnosed with and/or treated for a structural birth defect or childhood cancer and their parents are invited to participate in the AGORA data- and biobank. Controls are recruited through random sampling from municipal registries. The parents receive questionnaires about demographics, family and pregnancy history, health status, prescribed medication, lifestyle, and occupational exposures before and during the index pregnancy. In addition, blood or saliva is collected from children and parents, while medical records are reviewed for diagnostic information. RESULTS: So far, we have collected data from over 6,860 families (3,747 birth defects, 905 childhood cancers, and 2,208 controls). The types of birth defects vary widely and comprise malformations of the digestive, respiratory, and urogenital tracts as well as facial, cardiovascular, kidney, skeletal, and central nervous system anomalies. The most frequently occurring childhood cancer types are acute lymphatic leukemia, Hodgkin and non-Hodgkin lymphoma, Wilms' tumor, and brain and spinal cord tumors. Our genetic and/or epidemiologic studies have been focused on hypospadias, anorectal malformations, congenital anomalies of the kidney and urinary tract (CAKUT), and orofacial clefts. CONCLUSION: The large AGORA data- and biobank offers great opportunities for investigating genetic and nongenetic risk factors for disorders in children and is open to collaborative initiatives. Birth Defects Research (Part A) 106:675-684, 2016. © 2016 Wiley Periodicals, Inc.


Assuntos
Bancos de Espécimes Biológicos/organização & administração , Anormalidades Congênitas/diagnóstico , Bases de Dados Factuais , Neoplasias/diagnóstico , Efeitos Tardios da Exposição Pré-Natal/diagnóstico , Adulto , Estudos de Casos e Controles , Criança , Pré-Escolar , Anormalidades Congênitas/classificação , Anormalidades Congênitas/genética , Anormalidades Congênitas/patologia , Feminino , Humanos , Lactente , Recém-Nascido , Estilo de Vida , Masculino , Neoplasias/classificação , Neoplasias/genética , Neoplasias/patologia , Gravidez , Efeitos Tardios da Exposição Pré-Natal/classificação , Fatores de Risco , Inquéritos e Questionários
4.
Genet Med ; 18(11): 1158-1162, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-26963285

RESUMO

PURPOSE: We aimed to identify a novel genetic cause of tooth agenesis (TA) and/or orofacial clefting (OFC) by combining whole-exome sequencing (WES) and targeted resequencing in a large cohort of TA and OFC patients. METHODS: WES was performed in two unrelated patients: one with severe TA and OFC and another with severe TA only. After deleterious mutations were identified in a gene encoding low-density lipoprotein receptor-related protein 6 (LRP6), all its exons were resequenced with molecular inversion probes in 67 patients with TA, 1,072 patients with OFC, and 706 controls. RESULTS: We identified a frameshift (c.4594delG, p.Cys1532fs) and a canonical splice-site mutation (c.3398-2A>C, p.?) in LRP6, respectively, in the patient with TA and OFC and in the patient with severe TA only. The targeted resequencing showed significant enrichment of unique LRP6 variants in TA patients but not in nonsyndromic OFC patients. Of the five variants in patients with TA, two affected the canonical splice site and three were missense variants; all variants segregated with the dominant phenotype, and in one case the missense mutation occurred de novo. CONCLUSION: Mutations in LRP6 cause TA in humans.Genet Med 18 11, 1158-1162.


Assuntos
Anodontia/genética , Exoma/genética , Predisposição Genética para Doença , Proteína-6 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética , Adolescente , Anodontia/patologia , Criança , Feminino , Mutação da Fase de Leitura/genética , Humanos , Masculino , Mutação de Sentido Incorreto/genética , Linhagem , Análise de Sequência de DNA , Via de Sinalização Wnt/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...