Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanoscale ; 5(14): 6507-17, 2013 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-23752798

RESUMO

The kinetics and mechanisms of graphene growth on Ni films at 720-880 °C have been measured using fast pulses of acetylene and real-time optical diagnostics. In situ UV-Raman spectroscopy was used to unambiguously detect isothermal graphene growth at high temperatures, measure the growth kinetics with ∼1 s temporal resolution, and estimate the fractional precipitation upon cooldown. Optical reflectivity and videography provided much faster temporal resolution. Both the growth kinetics and the fractional isothermal precipitation were found to be governed by the C2H2 partial pressure in the CVD pulse for a given film thickness and temperature, with up to ∼94% of graphene growth occurring isothermally within 1 second at 800 °C at high partial pressures. At lower partial pressures, isothermal graphene growth is shown to continue 10 seconds after the gas pulse. These flux-dependent growth kinetics are described in the context of a dissolution/precipitation model, where carbon rapidly dissolves into the Ni film and later precipitates driven by gradients in the chemical potential. The combination of pulsed-CVD and real-time optical diagnostics opens new opportunities to understand and control the fast, sub-second growth of graphene on various substrates at high temperatures.

2.
J Am Soc Mass Spectrom ; 23(7): 1260-5, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22549732

RESUMO

A portable apparatus for the separation of krypton from environmental air samples was tested. The apparatus is based on the cryogenic trapping of gases at liquid nitrogen temperature followed by controlled releases at higher temperatures. The setup consists of a liquid nitrogen trap for the removal of H(2)O and CO(2), followed by charcoal-filled coils that sequentially collect and release krypton and other gases providing four stages of gas chromatography to achieve separation and purification of krypton from mainly N(2), O(2), and Ar. Residual reactive gases remaining after the final stage of chromatography are removed with a hot Ti sponge getter. A thermal conductivity detector is used to monitor the characteristic elution times of the various components of condensed gases in the traps during step-wise warming of the traps from liquid nitrogen temperatures to 0 °C, and then to 100 °C. This allows optimizing the switching times of the valves between the stages of gas chromatography so that mainly krypton is selected and loaded to the next stage while exhausting the other gases using a He carrier. A krypton separation efficiency of ~80 % was determined using a quadrupole mass spectrometer.


Assuntos
Ar/análise , Criptônio/isolamento & purificação , Espectrometria de Massas/métodos , Dióxido de Carbono/química , Criptônio/química , Lasers , Temperatura , Água/química
3.
Small ; 8(10): 1534-42, 2012 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-22419542

RESUMO

Very short arrays of continuous single-wall carbon nanotubes (SWNTs) are grown incrementally in steps as small as 25 nm using pulsed chemical vapor deposition (CVD). In-situ optical extinction measurements indicate that over 98% of the nanotubes reinitiate growth on successive gas pulses, and high-resolution transmission electron microscopy (HR-TEM) images show that the SWNTs do not exhibit segments, caps, or noticeable sidewall defects resulting from repeatedly stopping and restarting growth. Time-resolved laser reflectivity (3-ms temporal resolution) is used to record the nucleation and growth kinetics for each fast (0.2 s) gas pulse and to measure the height increase of the array in situ, providing a method to incrementally grow short nanotube arrays to precise heights. Derivatives of the optical reflectivity signal reveal distinct temporal signatures for both nucleation and growth kinetics, with their amplitude ratio on the first gas pulse serving as a good predictor for the evolution of the growth of the nanotube ensemble into a coordinated array. Incremental growth by pulsed CVD is interpreted in the context of autocatalytic kinetic models as a special processing window in which a sufficiently high flux of feedstock gas drives the nucleation and rapid growth phases of a catalyst nanoparticle ensemble to occur within the temporal period of the gas pulse, but without inducing growth termination.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...