Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 15(7): e0235288, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32614920

RESUMO

The American crocodile (Crocodylus acutus) is a widely distributed species across coastal and brackish areas of the Neotropical region of the Americas and the Greater Antilles. Available information on patterns of genetic differentiation in C. acutus shows a complex structuring influenced by interspecific interactions (mainly hybridization) and anthropogenic actions (mostly historical hunting, recent poaching, habitat loss and fragmentation, and unintentional translocation of individuals). In this study, we used data on mitochondrial DNA control region and 11 nuclear polymorphic microsatellite loci to assess the degree of population structure of C. acutus in South America, North America, Central America and the Greater Antilles. We used traditional genetic differentiation indices, Bayesian clustering and multivariate methods to create a more comprehensive picture of the genetic relationships within the species across its range. Analyses of mtDNA and microsatellite loci show evidence of a strong population genetic structure in the American crocodile, with unique populations in each sampling locality. Our results support previous findings showing large degrees of genetic differentiation between the continental and the Greater Antillean C. acutus. We report three new haplotypes unique to Venezuela, which are considerably less distant from the Central and North American haplotypes than to the Greater Antillean ones. Our findings reveal genetic population differentiation between Cuban and Jamaican C. acutus and offer the first evidence of strong genetic differentiation among the populations of Greater Antillean C. acutus.


Assuntos
Jacarés e Crocodilos/genética , Animais , Região do Caribe , América Central , DNA Mitocondrial/genética , Variação Genética , Genética Populacional , Haplótipos , Repetições de Microssatélites , Mitocôndrias/genética , América do Norte , América do Sul
2.
R Soc Open Sci ; 2(9): 150409, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26473062

RESUMO

The genus Crocodylus comprises 12 currently recognized species, many of which can be difficult to differentiate phenotypically. Interspecific hybridization among crocodiles is known to occur in captivity and has been documented between some species in the wild. The identification of hybrid individuals is of importance for management and monitoring of crocodilians, many of which are Convention on International Trade in Endangered Species (CITES) listed. In this study, both mitochondrial and nuclear DNA markers were evaluated for their use in confirming a suspected hybrid zone between American crocodile (Crocodylus acutus) and Morelet's crocodile (Crocodylus moreletii) populations in southern Belize where individuals and nests exhibiting atypical phenotypic features had previously been observed. Patterns observed in both phenotypic and molecular data indicate possible behavioural and ecological characteristics associated with hybridization events. The results of the combined analyses found that the majority of suspected hybrid samples represent crosses between female C. acutus and male C. moreletii. Phenotypic data could statistically identify hybrids, although morphological overlap between hybrids and C. moreletii reduced reliability of identification based solely on field characters. Ecologically, C. acutus was exclusively found in saline waters, whereas hybrids and C. moreletii were largely absent in these conditions. A hypothesized correlation between unidirectional hybridization and destruction of C. acutus breeding habitats warrants additional research.

3.
Mol Ecol ; 20(20): 4199-215, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21906195

RESUMO

The Nile crocodile (Crocodylus niloticus) is an ancient icon of both cultural and scientific interest. The species is emblematic of the great civilizations of the Nile River valley and serves as a model for international wildlife conservation. Despite its familiarity, a centuries-long dispute over the taxonomic status of the Nile crocodile remains unresolved. This dispute not only confounds our understanding of the origins and biogeography of the 'true crocodiles' of the crown genus Crocodylus, but also complicates conservation and management of this commercially valuable species. We have taken a total evidence approach involving phylogenetic analysis of mitochondrial and nuclear markers, as well as karyotype analysis of chromosome number and structure, to assess the monophyletic status of the Nile crocodile. Samples were collected from throughout Africa, covering all major bioregions. We also utilized specimens from museum collections, including mummified crocodiles from the ancient Egyptian temples at Thebes and the Grottes de Samoun, to reconstruct the genetic profiles of extirpated populations. Our analyses reveal a cryptic evolutionary lineage within the Nile crocodile that elucidates the biogeographic history of the genus and clarifies long-standing arguments over the species' taxonomic identity and conservation status. An examination of crocodile mummy haplotypes indicates that the cryptic lineage corresponds to an earlier description of C. suchus and suggests that both African Crocodylus lineages historically inhabited the Nile River. Recent survey efforts indicate that C. suchus is declining or extirpated throughout much of its distribution. Without proper recognition of this cryptic species, current sustainable use-based management policies for the Nile crocodile may do more harm than good.


Assuntos
Jacarés e Crocodilos/genética , DNA/genética , Evolução Molecular , Especiação Genética , África , Animais , Antigo Egito , Haplótipos , História Antiga , Humanos , Múmias/história , Filogeografia , Alinhamento de Sequência
4.
J Exp Zool A Ecol Genet Physiol ; 315(6): 358-75, 2011 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-21462351

RESUMO

Among crocodilians, Crocodylus rhombifer is one of the world's most endangered species with the smallest natural distribution. In Cuba, this endemic species coexists with the American crocodile (Crocodylus acutus). Hybridization between these two species is well known in captivity and might occur in the wild, but has never been demonstrated genetically. Here, we combined molecular data with environmental, geographic, and fossil data to infer the evolutionary history of Crocodylus in the Cuban Archipelago, and to evaluate genealogical support for species boundaries. We analyzed seven microsatellite loci plus DNA sequence data from nuclear (RAG-1) and mitochondrial (cytochrome b and cytochrome oxidase I) genes from 89 wild-caught individuals in Cuba, Grand Cayman Island, Jamaica, and Central America, and two samples from zoo collections. Microsatellites showed evidence of introgression, suggesting potential hybridization among Cuban groups. In Cuba, C. acutus contained one mitochondrial DNA (mtDNA) haplotype, whereas C. rhombifer contained two haplotypes. MtDNA data showed that C. acutus is paraphyletic with respect to C. rhombifer, revealing 1% sequence divergence between species within Cuba vs. 8% divergence between Cuban forms and mainland C. acutus. We suggest that hybridization has been a historical as well as a current phenomenon between C. acutus and C. rhombifer. These findings suggest that long-term conservation of crocodiles in Cuba will require identification of genetically pure and hybrid individuals, and a decrease in anthropogenic activities. We also recommend more extensive morphological and genetic analyses of Cuban population to establish clear boundaries of the hybrid zone between C. acutus and C. rhombifer.


Assuntos
Jacarés e Crocodilos/genética , Evolução Molecular , Alelos , Jacarés e Crocodilos/metabolismo , Animais , Sequência de Bases , Análise por Conglomerados , Conservação dos Recursos Naturais , Cuba , Citocromos b/química , Citocromos b/genética , DNA Mitocondrial/química , DNA Mitocondrial/genética , Complexo IV da Cadeia de Transporte de Elétrons/química , Complexo IV da Cadeia de Transporte de Elétrons/genética , Variação Genética , Proteínas de Homeodomínio/química , Proteínas de Homeodomínio/genética , Hibridização Genética , Repetições de Microssatélites/genética , Dados de Sequência Molecular , Filogenia , Reação em Cadeia da Polimerase/veterinária , Alinhamento de Sequência
5.
Mol Phylogenet Evol ; 50(3): 496-506, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19056500

RESUMO

The taxonomy of the African dwarf crocodile (genus Osteolaemus) has been disputed since a novel morphotype was discovered in the early 20th Century. Because this poorly-known reptile is widely hunted throughout the forests of Central and West Africa, resolving the existence and extent of taxonomic units has important management and conservation implications. Lack of molecular data from individuals of known origin and historical disagreement on diagnostic morphological characters have hindered attempts to settle one of the most important taxonomic questions in the Crocodylia. In an effort to clarify the evolutionary relationships among dwarf crocodiles, we sequenced three mitochondrial and two nuclear genes using a large sample of dwarf crocodiles from known localities across major drainage basins of forested Africa. Concordant results from Bayesian, maximum likelihood, maximum parsimony and population aggregation analytical methods support a previously recognized division of the dwarf crocodile into a Congo Basin form (O. osborni) and a West African form (Osteolaemus tetraspis), but also reveal a third diagnosable lineage from West Africa warranting recognition as an separate taxonomic unit. Corrected genetic distances between geographic regions ranged from 0.2% to 0.6% in nuclear fragments and 10.0 to 16.2% in mitochondrial COI. Population aggregation, using fixed and alternate character (nucleotide) states to cluster or divide populations, recovered 232 such molecular characters in 4286 bp of sequence data and unambiguously aggregated populations into their respective geographic clade. Several previously recognized morphological differences coincide with our molecular analysis to distinguish Congo Basin crocodiles from the Ogooué Basin and West Africa. Discrete morphological characters have not yet been documented between the latter two regions, suggesting further work is needed or molecular data may be required to recognize taxonomic divisions in cases where putative species are morphologically cryptic. This study highlights the importance of using widespread taxon sampling and a multiple evidence approach to diagnose species boundaries and reveal cryptic diversity.


Assuntos
Jacarés e Crocodilos/genética , Evolução Molecular , Especiação Genética , Filogenia , África , Jacarés e Crocodilos/anatomia & histologia , Jacarés e Crocodilos/classificação , Animais , Núcleo Celular/genética , DNA Mitocondrial/genética , Genética Populacional , Geografia , Haplótipos , Alinhamento de Sequência , Análise de Sequência de DNA , Especificidade da Espécie
6.
J Exp Zool A Ecol Genet Physiol ; 309(10): 661-73, 2008 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-18626922

RESUMO

The American crocodile (Crocodylus acutus) and the Morelet's crocodile (C. moreletii) are broadly sympatric in Belize and Mexico. The presence of morphologically anomalous individuals in the overlapping range area suggests possible hybridization between these species. Analysis of 477 base pairs of the mitochondrial tRNA(Pro)-tRNA(Phe)-Dloop region revealed the presence of pure C. acutus (N=43) and C. moreletii (N=56), as well as a high proportion of interspecific hybrids (N=17, 14.6%) in the Yucatan Peninsula, Mexico. Although all individuals could be assigned to one species or other based on phenotypic characters, some had been characterized as potential hybrids in the field by anomalous scale counts. The hybridization zone lies along the area of sympatry between C. acutus and C. moreletii investigated in this study, but extends further inland if hybrid localities from Belize are included. Hybridization in the Yucatan Peninsula is bidirectional, which indicates considerably more genetic contact between these species than previously recognized, and is probably more detrimental to the genetic integrity of smaller C. acutus populations. A more intensive study of the pattern of hybridization is warranted and supports continued classification of C. acutus as a critically threatened species in the Yucatan Peninsula.


Assuntos
Jacarés e Crocodilos/anatomia & histologia , Jacarés e Crocodilos/genética , DNA Mitocondrial/genética , Hibridização Genética/genética , Jacarés e Crocodilos/classificação , Animais , Feminino , Haplótipos , Masculino , México , Dados de Sequência Molecular , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...