Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mar Pollut Bull ; 170: 112664, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34217051

RESUMO

Increasing the precision of nitrogen (N) fertiliser management in cropping systems is integral to increasing the environmental and economic sustainability of cropping. In a simulation study, we found that natural variability in year-to-year climate had a major effect on optimum N fertiliser rates for sugarcane in the Tully region of north-eastern Australia, where N discharges pose high risks to Great Barrier Reef ecosystems. There were interactions between climate and other factors affecting crop growth that made optimum N rates field-specific. The regional average optimum N fertiliser rate was substantially lower than current industry guidelines. Likewise, simulated N losses to the environment at optimum N fertiliser rates were substantially lower than the simulated losses at current industry fertiliser guidelines. Dissolved N discharged from rivers is related to fertiliser applications. If the reductions in N applications identified in the study occurred in the Tully region, the reduction in dissolved N discharges from rivers in the region would almost meet current water quality improvement targets. Whilst there were many assumptions made in this exploratory study, and there are many steps between the study and a practically implemented dynamic N fertiliser recommendation system, the potential environmental benefits justify field validation and further development of the concepts identified in the study.


Assuntos
Fertilizantes , Nitrogênio , Agricultura , Clima , Ecossistema , Fertilizantes/análise
2.
Sci Total Environ ; 672: 846-854, 2019 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-30978546

RESUMO

Nitrification inhibitors show great potential to reduce nitrogen losses from agricultural systems and to improve nitrogen use efficiency. The most recently developed nitrification inhibitor 3,4-dimethylpyrazole phosphate (DMPP) is gaining popularity due to its benefits relative to other compounds. However, the behaviour of DMPP and its effect on nitrification in soils has been characterised using inconsistent and confusing terminology. Many studies have used the term half-life to describe the persistence of DMPP but used different experimental methods to derive it leading to highly variable results. We assessed how different methodologies in experiments may have contributed to the variability in the results using a framework that describes the behaviour of DMPP and its effect on nitrification in terms of: persistence, bioactivity and longevity. We show that deriving the persistence of DMPP using 14C labelling techniques is challenging because it requires consideration of other 14C pools in the soil. We also describe the limitations of soil inorganic nitrogen measurements to characterise the bioactivity and longevity of the inhibitory effect on nitrification. We conclude by proposing experiments that can facilitate the evaluation of the benefits of DMPP across broader scales. While this study focused on DMPP, the concepts presented here are equally relevant to other nitrification inhibitors.

3.
Mar Pollut Bull ; 65(4-9): 128-35, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22424798

RESUMO

Nitrogen (N) lost from farms, especially as the highly bioavailable dissolved inorganic form, may be damaging Australia's Great Barrier Reef (GBR). As sugarcane is the dominant cropping system in GBR catchments, its N management practises are coming under increasing scrutiny. This study measured dissolved inorganic N lost in surface runoff water and sugarcane productivity over 3 years. The experiment compared the conventional fertiliser N application rate to sugarcane (average 180kg N/ha/year) and a rate based on replacing N exported in the previous crop (average 94kg N/ha/year). Dissolved inorganic N losses in surface water were 72%, 48% and 66% lower in the three monitored years in the reduced N fertiliser treatment. There was no significant difference in sugarcane yield between the two fertiliser N treatments, nor any treatment difference in soil mineral N - both of these results are indicators of the sustainability of the lower fertiliser N applications.


Assuntos
Agricultura/estatística & dados numéricos , Fertilizantes/estatística & dados numéricos , Nitrogênio/análise , Saccharum , Poluentes Químicos da Água/análise , Poluição Química da Água/prevenção & controle , Agricultura/métodos , Austrália , Conservação dos Recursos Naturais , Recifes de Corais , Monitoramento Ambiental , Ciclo do Nitrogênio , Poluição Química da Água/estatística & dados numéricos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...