Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 10(1): 2170, 2019 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-31092826

RESUMO

During the Last Glacial Maximum (LGM; ~20,000 years ago), the global ocean sequestered a large amount of carbon lost from the atmosphere and terrestrial biosphere. Suppressed CO2 outgassing from the Southern Ocean is the prevailing explanation for this carbon sequestration. By contrast, the North Atlantic Ocean-a major conduit for atmospheric CO2 transport to the ocean interior via the overturning circulation-has received much less attention. Here we demonstrate that North Atlantic carbon pump efficiency during the LGM was almost doubled relative to the Holocene. This is based on a novel proxy approach to estimate air-sea CO2 exchange signals using combined carbonate ion and nutrient reconstructions for multiple sediment cores from the North Atlantic. Our data indicate that in tandem with Southern Ocean processes, enhanced North Atlantic CO2 absorption contributed to lowering ice-age atmospheric CO2.

2.
Science ; 349(6249): 706-10, 2015 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-26273049

RESUMO

Changes in the formation of dense water in the Arctic Ocean and Nordic Seas [the "Arctic Mediterranean" (AM)] probably contributed to the altered climate of the last glacial period. We examined past changes in AM circulation by reconstructing radiocarbon ventilation ages of the deep Nordic Seas over the past 30,000 years. Our results show that the glacial deep AM was extremely poorly ventilated (ventilation ages of up to 10,000 years). Subsequent episodic overflow of aged water into the mid-depth North Atlantic occurred during deglaciation. Proxy data also suggest that the deep glacial AM was ~2° to 3°C warmer than modern temperatures; deglacial mixing of the deep AM with the upper ocean thus potentially contributed to the melting of sea ice, icebergs, and terminal ice-sheet margins.

3.
Philos Trans A Math Phys Eng Sci ; 363(1826): 81-99, 2005 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-15598625

RESUMO

The SW Indian Ocean contains at least four layers of water masses with different sources: deep Antarctic (Lower Circumpolar Deep Water) flow to the north, midwater North Indian Deep Water flow to the south and Upper Circumpolar Deep Water to the north, meridional convergence of intermediate waters at 500-1500 m, and the shallow South Equatorial Current flowing west. Sedimentation rates in the area are rather low, being less than 1 cm ka(-1) on Madagascar Ridge, but up to 4 cm ka(-1) at Amirante Passage. Bottom flow through the Madagascar-Mascarene Basin into Amirante Passage varies slightly on glacial-interglacial time-scales, with faster flow in the warm periods of the last interglacial and minima in cold periods. Far more important are the particularly high flow rates, inferred from silt grain size, which occur at warm-to-cold transitions rather than extrema. This suggests the cause is changing density gradient driving a transiently fast flow. Corroboration is found in the glacial-interglacial range of benthic delta18O which is ca. 2 per thousand, suggesting water close to freezing and at least 1.2 more saline and thus more dense glacial bottom waters than present. Significant density steps are inferred in isotope stage 6, the 5e-5d, and 5a-4 transitions. Oxygen isotope data suggest little change by mixing in glacial bottom water on their northward path. Benthic carbon isotope ratios at Amirante Passage differ from glacial Southern Ocean values, due possibly to absence of a local productivity effect present in the Southern Ocean.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...