Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochemistry ; 56(44): 5920-5930, 2017 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-29068219

RESUMO

In this study, we demonstrate an enzyme cascade reaction using a benzoate CoA ligase (BadA), a modified nonribosomal peptide synthase (PheAT), a phenylpropanoyltransferase (BAPT), and a benzoyltransferase (NDTNBT) to produce an anticancer paclitaxel analogue and its precursor from the commercially available biosynthetic intermediate baccatin III. BAPT and NDTNBT are acyltransferases on the biosynthetic pathway to the antineoplastic drug paclitaxel in Taxus plants. For this study, we addressed the recalcitrant expression of BAPT by expressing it as a soluble maltose binding protein fusion (MBP-BAPT). Further, the preparative-scale in vitro biocatalysis of phenylisoserinyl CoA using PheAT enabled thorough kinetic analysis of MBP-BAPT, for the first time, with the cosubstrate baccatin III. The turnover rate of MBP-BAPT was calculated for the product N-debenzoylpaclitaxel, a key intermediate to various bioactive paclitaxel analogues. MBP-BAPT also converted, albeit more slowly, 10-deacetylbaccatin III to N-deacyldocetaxel, a precursor of the pharmaceutical docetaxel. With PheAT available to make phenylisoserinyl CoA and kinetic characterization of MBP-BAPT, we used Michaelis-Menten parameters of the four enzymes to adjust catalyst and substrate loads in a 200-µL one-pot reaction. This multienzyme network produced a paclitaxel analogue N-debenzoyl-N-(2-furoyl)paclitaxel (230 ng) that is more cytotoxic than paclitaxel against certain macrophage cell types. Also in this pilot reaction, the versatile N-debenzoylpaclitaxel intermediate was made at an amount 20-fold greater than the N-(2-furoyl) product. This reaction network has great potential for optimization to scale-up production and is attractive in its regioselective O- and N-acylation steps that remove protecting group manipulations used in paclitaxel analogue synthesis.


Assuntos
Alcaloides/metabolismo , Biocatálise , Coenzima A-Transferases/metabolismo , Paclitaxel/análogos & derivados , Paclitaxel/síntese química , Taxoides/metabolismo , Antineoplásicos Fitogênicos/síntese química , Cinética
3.
Plant J ; 88(5): 705-716, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27490826

RESUMO

Despite the importance of riboflavin as the direct precursor of the cofactors flavin adenine dinucleotide (FAD) and flavin mononucleotide (FMN), the physiologically relevant catalyst dephosphorylating the riboflavin biosynthesis pathway intermediate 5-amino-6-ribitylamino-2,4(1H,3H) pyrimidinedione 5'-phosphate (ARPP) has not been characterized from any organism. By using as the query sequence a previously identified plastidial FMN hydrolase AtcpFHy1 (At1g79790), belonging to the haloacid dehalogenase (HAD) superfamily, seven candidates for the missing ARPP phosphatase were found, cloned, recombinantly expressed, and purified. Activity screening showed that the enzymes encoded by AtcpFHy1, At4g11570, and At4g25840 catalyze dephosphorylation of ARPP. AtcpFHy1 was renamed AtcpFHy/PyrP1, At4g11570 and At4g25840 were named AtPyrP2 and AtGpp1/PyrP3, respectively. Subcellular localization in planta indicated that AtPyrP2 was localized in plastids and AtGpp1/PyrP3 in mitochondria. Biochemical characterization of AtcpFHy/PyrP1 and AtPyrP2 showed that they have similar Km values for the substrate ARPP, with AtcpFHy/PyrP1 having higher catalytic efficiency. Screening of 21 phosphorylated substrates showed that AtPyrP2 is specific for ARPP. Molecular weights of AtcpFHy/PyrP1 and AtPyrP2 were estimated at 46 and 72 kDa, suggesting dimers. pH and temperature optima for AtcpFHy/PyrP1 and AtPyrP2 were ~7.0-8.5 and 40-50°C. T-DNA knockout of AtcpFHy/PyrP1 did not affect the flavin profile of the transgenic plants, whereas silencing of AtPyrP2 decreased accumulation of riboflavin, FMN, and FAD. Our results strongly support AtPyrP2 as the missing phosphatase on the riboflavin biosynthesis pathway in Arabidopsis thaliana. The identification of this enzyme closes a long-standing gap in understanding of the riboflavin biosynthesis in plants.


Assuntos
Arabidopsis/enzimologia , Arabidopsis/metabolismo , Hidrolases/metabolismo , Riboflavina/biossíntese , Dinitrocresóis/metabolismo , Mononucleotídeo de Flavina/metabolismo , Flavina-Adenina Dinucleotídeo/metabolismo , Nucleotídeos de Uracila/metabolismo
4.
PLoS Genet ; 11(12): e1005680, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26633036

RESUMO

Gene expression profiling in E 11 mouse embryos identified high expression of the long noncoding RNA (lncRNA), LNCRNA-HIT in the undifferentiated limb mesenchyme, gut, and developing genital tubercle. In the limb mesenchyme, LncRNA-HIT was found to be retained in the nucleus, forming a complex with p100 and CBP. Analysis of the genome-wide distribution of LncRNA-HIT-p100/CBP complexes by ChIRP-seq revealed LncRNA-HIT associated peaks at multiple loci in the murine genome. Ontological analysis of the genes contacted by LncRNA-HIT-p100/CBP complexes indicate a primary role for these loci in chondrogenic differentiation. Functional analysis using siRNA-mediated reductions in LncRNA-HIT or p100 transcripts revealed a significant decrease in expression of many of the LncRNA-HIT-associated loci. LncRNA-HIT siRNA treatments also impacted the ability of the limb mesenchyme to form cartilage, reducing mesenchymal cell condensation and the formation of cartilage nodules. Mechanistically the LncRNA-HIT siRNA treatments impacted pro-chondrogenic gene expression by reducing H3K27ac or p100 activity, confirming that LncRNA-HIT is essential for chondrogenic differentiation in the limb mesenchyme. Taken together, these findings reveal a fundamental epigenetic mechanism functioning during early limb development, using LncRNA-HIT and its associated proteins to promote the expression of multiple genes whose products are necessary for the formation of cartilage.


Assuntos
Diferenciação Celular/genética , Condrogênese/genética , RNA Longo não Codificante/genética , Proteína p120 Ativadora de GTPase/genética , Animais , Epigênese Genética/genética , Extremidades/crescimento & desenvolvimento , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Botões de Extremidades/crescimento & desenvolvimento , Mesoderma/crescimento & desenvolvimento , Camundongos , RNA Longo não Codificante/biossíntese , Proteína p120 Ativadora de GTPase/biossíntese
5.
Biochemistry ; 54(40): 6230-42, 2015 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-26378464

RESUMO

A benzoate CoA ligase (BadA), isolated from the bacterium Rhodopseudomonas palustris, catalyzes the conversion of benzoate to benzoyl CoA on the catabolic pathway of aromatic carboxylic acids. Herein, apparent Michaelis constants K(app)cat and K(app)M were determined for an expanded array of 31 substrates chosen to systematically probe the active site architecture of the enzyme and provide a baseline for expansion of wild-type substrate specificity. Acyl CoA products were observed for 25 of the 31 substrates; in general, BadA converted ortho-substituted substrates better than the corresponding meta and para regioisomers, and the turnover number was more affected by steric rather than electronic effects. The kinetic data are interpreted in relation to six crystal structures of BadA in complex with several substrates and a benzoyl-AMP reaction intermediate. In contrast to other known natural substrate-bound benzoate ligase structures, all substrate-bound BadA structures adopted the thiolation conformation instead of the adenylation conformation. We also observed all the aryl carboxylates to be uniquely oriented within the active site, relative to other structures. Together, the kinetics and structural data suggested a mechanism that involves substrate binding in the thiolation conformation, followed by substrate rotation to an active orientation upon the transition to the adenylation conformation. On the basis of this hypothesis and the structural data, sterically demanding active site residues were mutated, and the substrate specificity was expanded substantially versus that of BadA. Novel activities were seen for substrates with larger substituents, including phenyl acetate. Additionally, the mutant Lys427Ala identified this nonconserved residue as essential for the thiolation step of BadA, but not adenylation. These variously acylated CoAs can serve as novel substrates of acyl CoA-dependent acyltransferases in coupled enzyme assays to produce analogues of bioactive natural products.


Assuntos
Coenzima A Ligases/química , Coenzima A Ligases/metabolismo , Rodopseudomonas/enzimologia , Monofosfato de Adenosina/análogos & derivados , Monofosfato de Adenosina/metabolismo , Benzoatos/química , Benzoatos/metabolismo , Domínio Catalítico , Coenzima A Ligases/genética , Cristalografia por Raios X , Halogenação , Cinética , Modelos Moleculares , Mutação , Conformação Proteica , Rodopseudomonas/química , Rodopseudomonas/genética , Especificidade por Substrato
6.
PLoS Genet ; 8(11): e1003064, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23166516

RESUMO

Unicellular marine algae have promise for providing sustainable and scalable biofuel feedstocks, although no single species has emerged as a preferred organism. Moreover, adequate molecular and genetic resources prerequisite for the rational engineering of marine algal feedstocks are lacking for most candidate species. Heterokonts of the genus Nannochloropsis naturally have high cellular oil content and are already in use for industrial production of high-value lipid products. First success in applying reverse genetics by targeted gene replacement makes Nannochloropsis oceanica an attractive model to investigate the cell and molecular biology and biochemistry of this fascinating organism group. Here we present the assembly of the 28.7 Mb genome of N. oceanica CCMP1779. RNA sequencing data from nitrogen-replete and nitrogen-depleted growth conditions support a total of 11,973 genes, of which in addition to automatic annotation some were manually inspected to predict the biochemical repertoire for this organism. Among others, more than 100 genes putatively related to lipid metabolism, 114 predicted transcription factors, and 109 transcriptional regulators were annotated. Comparison of the N. oceanica CCMP1779 gene repertoire with the recently published N. gaditana genome identified 2,649 genes likely specific to N. oceanica CCMP1779. Many of these N. oceanica-specific genes have putative orthologs in other species or are supported by transcriptional evidence. However, because similarity-based annotations are limited, functions of most of these species-specific genes remain unknown. Aside from the genome sequence and its analysis, protocols for the transformation of N. oceanica CCMP1779 are provided. The availability of genomic and transcriptomic data for Nannochloropsis oceanica CCMP1779, along with efficient transformation protocols, provides a blueprint for future detailed gene functional analysis and genetic engineering of Nannochloropsis species by a growing academic community focused on this genus.


Assuntos
Genoma , Anotação de Sequência Molecular , Estramenópilas/genética , Sequência de Bases , Genômica , Nitrogênio/administração & dosagem , Nitrogênio/metabolismo , Análise de Sequência de DNA , Análise de Sequência de RNA/métodos , Especificidade da Espécie , Estramenópilas/crescimento & desenvolvimento , Transformação Genética
7.
Biomol NMR Assign ; 4(1): 97-9, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20232265

RESUMO

The homeobox gene (Hoxa13) codes for a transcription factor protein that binds to AT-rich DNA sequences and controls expression of many important proteins during embryonic morphogenesis. We report complete backbone NMR chemical shift assignments of mouse Hoxa13 DNA binding domain bound to an 11-residue DNA duplex (BMRB no. 16577).


Assuntos
DNA/química , Proteínas de Homeodomínio/química , Sequência de Aminoácidos , Animais , DNA/metabolismo , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Camundongos , Dados de Sequência Molecular , Ressonância Magnética Nuclear Biomolecular , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína
8.
Biomol NMR Assign ; 3(2): 199-201, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19888690

RESUMO

The homeobox gene (HOXA13) codes for a transcription factor protein that binds to AT-rich DNA sequences and controls expression of many important proteins during embryonic morphogenesis. We report complete NMR chemical shift assignments of the mouse HOXA13 DNA binding domain (A13DBD; BMRB no. 16252).


Assuntos
DNA/metabolismo , Proteínas de Homeodomínio/química , Proteínas de Homeodomínio/metabolismo , Animais , Concentração de Íons de Hidrogênio , Camundongos , Ressonância Magnética Nuclear Biomolecular , Estrutura Terciária de Proteína , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...