Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 108
Filtrar
1.
Physiol Genomics ; 56(3): 276-282, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38189116

RESUMO

Preeclampsia is a hypertensive disorder of pregnancy that affects ∼2%-5% of all pregnancies, contributes to 4 of the top 10 causes of pregnancy-related deaths, and remains a long-term risk factor for cardiometabolic diseases. Yet, little is still known about the molecular mechanisms that lead to this disease. There is evidence that some cases have a genetic cause. However, it is well appreciated that harmful factors in the environment, such as poor nutrition, stress, and toxins, may lead to epigenetics changes that can contribute to this disease. DNA methylation is one of the epigenetic modifications known to be fairly stable and impact gene expression. Using DNA from buccal swabs, we analyzed global DNA methylation among three groups of individuals: mothers who experienced 1) early-stage preeclampsia (<32 wk), 2) late-stage preeclampsia (>37 wk), or 3) no complications during their pregnancies, as well as the children from these three groups. We found significant differentially methylated regions (DMRs) between mothers who experienced preeclampsia compared with those with no complications adjacent or within genes that are important for placentation, embryonic development, cell adhesion, and inflammation (e.g., the cadherin pathway). A significant portion of DMR genes showed expression in tissues relevant to preeclampsia (i.e., the brain, heart, kidney, uterus, ovaries, and placenta). As this study was performed on DNA extracted from cheek swabs, this opens the way to future studies in different tissues, aimed at identifying possible biomarkers of risk and early detection, developing targeted interventions, and reducing the progression of this life-threatening disease.NEW & NOTEWORTHY Preeclampsia is a life-threatening hypertensive disorder, affecting 2%-5% of pregnancies, that remains poorly understood. This study analyzed DNA methylation from buccal swabs from mothers who experienced early and late-stage preeclampsia and those with uncomplicated pregnancies, along with their children. Differentially methylated regions were found near and within genes crucial for placental function, embryonic development, and inflammation. Many of these genes are expressed in preeclampsia-related tissues, offering hope for future biomarker development for this condition.


Assuntos
Hipertensão , Pré-Eclâmpsia , Criança , Gravidez , Feminino , Humanos , Placenta/metabolismo , Pré-Eclâmpsia/diagnóstico , Epigenoma , Metilação de DNA/genética , Hipertensão/genética , Biomarcadores/metabolismo , Inflamação/genética , DNA
2.
Clin Sci (Lond) ; 138(3): 117-134, 2024 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-38261523

RESUMO

In preterm neonates unable to obtain sufficient oral nutrition, intravenous lipid emulsion is life-saving. The contribution of post-conceptional level of maturation to pathology that some neonates experience is difficult to untangle from the global pathophysiology of premature birth. In the present study, we determined fetal physiological responses to intravenous lipid emulsion. Fetal sheep were given intravenous Intralipid 20® (n = 4 females, 7 males) or Lactated Ringer's Solution (n = 7 females, 4 males) between 125 ± 1 and 133 ± 1 d of gestation (term = 147 d). Manufacturer's recommendation for premature human infants was followed: 0.5-1 g/kg/d initial rate, increased by 0.5-1 to 3 g/kg/d. Hemodynamic parameters and arterial blood chemistry were measured, and organs were studied postmortem. Red blood cell lipidomics were analyzed by LC-MS. Intravenous Intralipid did not alter hemodynamic or most blood parameters. Compared with controls, Intralipid infusion increased final day plasma protein (P=0.004; 3.5 ± 0.3 vs. 3.9 ± 0.2 g/dL), albumin (P = 0.031; 2.2 ± 0.1 vs. 2.4 ± 0.2 g/dL), and bilirubin (P<0.001; conjugated: 0.2 ± 0.1 vs. 0.6 ± 0.2 mg/dL; unconjugated: 0.2 ± 0.1 vs. 1.1 ± 0.4 mg/dL). Circulating IGF-1 decreased following Intralipid infusion (P<0.001; 66 ± 24 vs. 46 ± 24 ng/mL). Compared with control Oil Red O liver stains (median score 0), Intralipid-infused fetuses scored 108 (P=0.0009). Lipidomic analysis revealed uptake and processing of infused lipids into red blood cells, increasing abundance of saturated fatty acids. The near-term fetal sheep tolerates intravenous lipid emulsion well, although lipid accumulates in the liver. Increased levels of unconjugated bilirubin may reflect increased red blood cell turnover or impaired placental clearance. Whether Intralipid is less well tolerated earlier in gestation remains to be determined.


Assuntos
Emulsões Gordurosas Intravenosas , Placenta , Recém-Nascido , Lactente , Masculino , Humanos , Feminino , Animais , Gravidez , Ovinos , Recém-Nascido Prematuro , Bilirrubina , Feto
3.
J Physiol ; 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-38160414
4.
J Cardiovasc Dev Dis ; 10(12)2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38132664

RESUMO

INTRODUCTION: The prenatal diagnosis of congenital heart disease (CHD) is a traumatic event that can cause expectant parents to experience anxiety, depression, and toxic stress. Prenatal exposure to stress may impact neonatal postoperative outcomes. In addition, expectant parents may have other psychosocial stressors that may compound maternal stress. We investigated the relationship between stress in pregnancies complicated by prenatally diagnosed CHD and their neonatal outcomes. METHODS: A pilot retrospective cohort study of pregnancies with prenatally diagnosed critical CHD (2019-2021) was performed. The collected data included pregnancy characteristics and neonatal and postoperative outcomes (including the need for exogenous corticosteroid treatment (ECT)). In order to quantify prenatal stressors, a composite prenatal stress score (PSS) was established and utilized. RESULTS: In total, 41 maternal-fetal dyads were evaluated. Thirteen (32%) neonates had single-ventricle anatomy. The need for ECT after CHD surgery was associated with higher pregnant patient PSS (p = 0.01). PSS did not correlate with birthweight, infection, or hypoglycemia in the neonatal period. CONCLUSIONS: Prenatal stress is multifactorial; higher PSS is correlates with post-bypass ECT, suggesting that a stressful intrauterine environment may be associated with worse neonatal postoperative outcomes.

5.
Physiol Rep ; 11(22): e15865, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38010207

RESUMO

Cardiac metabolic substrate preference shifts at parturition from carbohydrates to fatty acids. We hypothesized that thyroid hormone (T3 ) and palmitic acid (PA) stimulate fetal cardiomyocyte oxidative metabolism capacity. T3 was infused into fetal sheep to a target of 1.5 nM. Dispersed cardiomyocytes were assessed for lipid uptake and droplet formation with BODIPY-labeled fatty acids. Myocardial expression levels were assessed PCR. Cardiomyocytes from naïve fetuses were exposed to T3 and PA, and oxygen consumption was measured with the Seahorse Bioanalyzer. Cardiomyocytes (130-day gestational age) exposed to elevated T3 in utero accumulated 42% more long-chain fatty acid droplets than did cells from vehicle-infused fetuses. In utero T3 increased myocardial mRNA levels of CD36, CPT1A, CPT1B, LCAD, VLCAD, HADH, IDH, PDK4, and caspase 9. In vitro exposure to T3 increased maximal oxygen consumption rate in cultured cardiomyocytes in the absence of fatty acids, and when PA was provided as an acute (30 min) supply of cellular energy. Longer-term exposure (24 and 48 h) to PA abrogated increased oxygen consumption rates stimulated by elevated levels of T3 in cultured cardiomyocytes. T3 contributes to metabolic maturation of fetal cardiomyocytes. Prolonged exposure of fetal cardiomyocytes to PA, however, may impair oxidative capacity.


Assuntos
Ácidos Graxos , Miócitos Cardíacos , Ovinos , Animais , Miócitos Cardíacos/metabolismo , Ácidos Graxos/metabolismo , Hormônios Tireóideos/metabolismo , Feto/metabolismo , Miocárdio/metabolismo , Ácido Palmítico/farmacologia , Ácido Palmítico/metabolismo
6.
Front Physiol ; 14: 1266444, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37942229

RESUMO

Developmental programming of chronic adverse cardiovascular health outcomes has been studied both using numerous human populations and an array of animal models. However, the mechanisms that produce transgenerational effects have been difficult to study due to a lack of developmentally relevant models. As such, how increased disease risk is carried to the second generation has been poorly studied. We hypothesized that the endothelium which mediates many acute and chronic vascular inflammatory responses is a key player in these effects, and epidemiological studies implicate transgenerational nutritional effects on endothelial health. To study the mutigenerational effects of maternal undernutrition on offspring endothelial health, we developed a model of transgenerational nutritional stress in guinea pigs, a translationally relevant precocial species with a relatively short lifespan. First- and second-generation offspring were subjected to a high fat diet in adolescence to exacerbate negative cardiovascular health. To assess transcriptional changes, we performed bulk RNA-sequencing in carotid artery endothelial cells, with groups stratified as prenatal control or food restricted, and postnatal control or high fat diet. We detected statistically significant gene alterations for each dietary permutation, some of which were unique to treatments and other transcriptional signatures shared by multiple or all conditions. These findings highlight a core group of genes altered by high fat diet that is shared by all cohorts and a divergence of transgenerational effects between the prenatal ad libitum and dietary restriction groups. This study establishes the groundwork for this model to be used to better understand the interplay of prenatal stress and genetic reprogramming.

7.
Am J Physiol Regul Integr Comp Physiol ; 325(6): R809-R819, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37867472

RESUMO

At birth, the fetus experiences a dramatic change in environment that is accompanied by a shift in myocardial fuel preference from lactate and glucose in fetal life to fatty acid oxidation after birth. We hypothesized that fatty acid metabolic machinery would mature during fetal life in preparation for this extreme metabolic transformation at birth. We quantified the pre- (94-day and 135-day gestation, term ∼147 days) and postnatal (5 ± 4 days postnatal) gene expression and protein levels for fatty acid transporters and enzymes in hearts from a precocial species, the sheep. Gene expression of fatty acid translocase (CD36), acyl-CoA synthetase long-chain 1 (ACSL1), carnitine palmitoyltransferase 1 (CPT1), hydroxy-acyl dehydrogenase (HADH), acetyl-CoA acetyltransferase (ACAT1), isocitrate dehydrogenase (IDH), and glycerol phosphate acyltransferase (GPAT) progressively increased through the perinatal period, whereas several genes [fatty acid transport protein 6 (FATP6), acyl-CoA synthetase long chain 3 (ACSL3), long-chain acyl-CoA dehydrogenase (LCAD), very long-chain acyl-CoA dehydrogenase (VLCAD), pyruvate dehydrogenase kinase (PDK4), phosphatidic acid phosphatase (PAP), and diacylglycerol acyltransferase (DGAT)] were stable in fetal hearts and had high expression after birth. Protein expression of CD36 and ACSL1 progressively increased throughout the perinatal period, whereas protein expression of carnitine palmitoyltransferase 1a (fetal isoform) (CPT1a) decreased and carnitine palmitoyltransferase 1b (adult isoform) (CPT1b) remained constitutively expressed. Using fluorescent-tagged long-chain fatty acids (BODIPY-C12), we demonstrated that fetal (125 ± 1 days gestation) cardiomyocytes produce 59% larger lipid droplets (P < 0.05) compared with newborn (8 ± 1 day) cardiomyocytes. These results provide novel insights into the perinatal maturation of cardiac fatty acid metabolism in a precocial species.NEW & NOTEWORTHY This study characterized the previously unknown expression patterns of genes that regulate the metabolism of free fatty acids in the perinatal sheep myocardium. This study shows that the prenatal myocardium prepares for the dramatic switch from carbohydrate metabolism to near complete reliance on free fatty acids postnatally. Fetal and neonatal cardiomyocytes also demonstrate differing lipid storage mechanisms where fetal cardiomyocytes form larger lipid droplets compared with newborn cardiomyocytes.


Assuntos
Carnitina O-Palmitoiltransferase , Ácidos Graxos não Esterificados , Gravidez , Feminino , Animais , Ovinos , Carnitina O-Palmitoiltransferase/metabolismo , Metabolismo dos Lipídeos , Acil-CoA Desidrogenase de Cadeia Longa/metabolismo , Ácidos Graxos/metabolismo , Coração Fetal/metabolismo , Isoformas de Proteínas/metabolismo , Ligases/metabolismo , Oxirredução
8.
Placenta ; 140: 100-108, 2023 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-37566941

RESUMO

INTRODUCTION: Maternal obesity is associated with increased risk of offspring obesity and cardiometabolic disease. Altered fetoplacental immune programming is a potential candidate mechanism. Differences in fetal placental macrophages, or Hofbauer cells (HBCs), have been observed in maternal obesity, and lipid metabolism is a key function of resident macrophages that may be deranged in inflammation/immune activation. We sought to test the following hypotheses: 1) maternal obesity is associated with altered HBC density and phenotype in the term placenta and 2) obesity-associated HBC changes are associated with altered placental lipid transport to the fetus. The impact of fetal sex was evaluated in all experiments. METHODS: We quantified the density and morphology of CD163-and CD68-positive HBCs in placental villi in 34 full-term pregnancies undergoing cesarean delivery (N = 15, maternal BMI ≥30 kg/m2; N = 19, BMI <30 kg/m2). Antibody-positive cells in terminal villi were detected and cell size and circularity analyzed using a semi-automated method for thresholding of bright-field microscopy images (ImageJ). Placental expression of lipid transporter genes was quantified using RTqPCR, and cord plasma triglycerides (TGs) were profiled using modified Wahlefeld method. The impact of maternal obesity and fetal sex on HBC features, lipid transporters, and cord TGs were evaluated by two-way ANOVA. Spearman correlations of cord TGs, HBC metrics and gene expression levels were calculated. RESULTS: Maternal obesity was associated with significantly increased density of HBCs, with male placentas most affected (fetal sex by maternal obesity interaction p = 0.04). CD163+ HBCs were larger and rounder in obesity-exposed male placentas. Sexually dimorphic expression of placental FATP4, FATP6, FABPPM, AMPKB1 and AMPKG and cord TGs was noted in maternal obesity, such that levels were higher in males and lower in females relative to sex-matched controls. Cord TGs were positively correlated with HBC density and FATP1 expression. DISCUSSION: Maternal obesity is associated with sex-specific alterations in HBC density and placental lipid transporter expression, which may impact umbilical cord blood TG levels and offspring cardiometabolic programming.


Assuntos
Obesidade Materna , Placenta , Humanos , Gravidez , Feminino , Masculino , Placenta/metabolismo , Obesidade Materna/complicações , Obesidade Materna/metabolismo , Sangue Fetal/metabolismo , Macrófagos/metabolismo , Obesidade/complicações , Obesidade/metabolismo , Lipídeos
9.
J Physiol ; 2023 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-37128962

RESUMO

Contraction of cardiomyocytes is initiated at subcellular elements called dyads, where L-type Ca2+ channels in t-tubules are located within close proximity to ryanodine receptors in the sarcoplasmic reticulum. While evidence from small rodents indicates that dyads are assembled gradually in the developing heart, it is unclear how this process occurs in large mammals. We presently examined dyadic formation in fetal and newborn sheep (Ovis aries), and the regulation of this process by fetal cardiac workload. By employing advanced imaging methods, we demonstrated that t-tubule growth and dyadic assembly proceed gradually during fetal sheep development, from 93 days of gestational age until birth (147 days). This process parallels progressive increases in fetal systolic blood pressure, and includes step-wise colocalization of L-type Ca2+ channels and the Na+ /Ca2+ exchanger with ryanodine receptors. These proteins are upregulated together with the dyadic anchor junctophilin-2 during development, alongside changes in the expression of amphiphysin-2 (BIN1) and its partner proteins myotubularin and dynamin-2. Increasing fetal systolic load by infusing plasma or occluding the post-ductal aorta accelerated t-tubule growth. Conversely, reducing fetal systolic load with infusion of enalaprilat, an angiotensin converting enzyme inhibitor, blunted t-tubule formation. Interestingly, altered t-tubule densities did not relate to changes in dyadic junctions, or marked changes in the expression of dyadic regulatory proteins, indicating that distinct signals are responsible for maturation of the sarcoplasmic reticulum. In conclusion, augmenting blood pressure and workload during normal fetal development critically promotes t-tubule growth, while additional signals contribute to dyadic assembly. KEY POINTS: T-tubule growth and dyadic assembly proceed gradually in cardiomyocytes during fetal sheep development, from 93 days of gestational age until the post-natal stage. Increasing fetal systolic load by infusing plasma or occluding the post-ductal aorta accelerated t-tubule growth and hypertrophy. In contrast, reducing fetal systolic load by enalaprilat infusion slowed t-tubule development and decreased cardiomyocyte size. Load-dependent modulation of t-tubule maturation was linked to altered expression patterns of the t-tubule regulatory proteins junctophilin-2 and amphiphysin-2 (BIN1) and its protein partners. Altered t-tubule densities did not influence dyadic formation, indicating that distinct signals are responsible for maturation of the sarcoplasmic reticulum.

11.
Reprod Sci ; 29(10): 2908-2920, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35534766

RESUMO

Understanding, predicting, and preventing pregnancy disorders have been a major research target. Nonetheless, the lack of progress is illustrated by research results related to preeclampsia and other hypertensive pregnancy disorders. These remain a major cause of maternal and infant mortality worldwide. There is a general consensus that the rate of progress toward understanding pregnancy disorders lags behind progress in other aspects of human health. In this presentation, we advance an explanation for this failure and suggest solutions. We propose that progress has been impeded by narrowly focused research training and limited imagination and innovation, resulting in the failure to think beyond conventional research approaches and analytical strategies. Investigations have been largely limited to hypothesis-generating approaches constrained by attempts to force poorly defined complex disorders into a single "unifying" hypothesis. Future progress could be accelerated by rethinking this approach. We advise taking advantage of innovative approaches that will generate new research strategies for investigating pregnancy abnormalities. Studies should begin before conception, assessing pregnancy longitudinally, before, during, and after pregnancy. Pregnancy disorders should be defined by pathophysiology rather than phenotype, and state of the art agnostic assessment of data should be adopted to generate new ideas. Taking advantage of new approaches mandates emphasizing innovation, inclusion of large datasets, and use of state of the art experimental and analytical techniques. A revolution in understanding pregnancy-associated disorders will depend on networks of scientists who are driven by an intense biological curiosity, a team spirit, and the tools to make new discoveries.


Assuntos
Hipertensão , Pré-Eclâmpsia , Complicações na Gravidez , Feminino , Humanos , Lactente , Mortalidade Infantil , Gravidez , Complicações na Gravidez/diagnóstico , Complicações na Gravidez/prevenção & controle
13.
Am J Obstet Gynecol ; 226(5): 607-632, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34968458

RESUMO

Most women in the United States do not meet the recommendations for healthful nutrition and weight before and during pregnancy. Women and providers often ask what a healthy diet for a pregnant woman should look like. The message should be "eat better, not more." This can be achieved by basing diet on a variety of nutrient-dense, whole foods, including fruits, vegetables, legumes, whole grains, healthy fats with omega-3 fatty acids that include nuts and seeds, and fish, in place of poorer quality highly processed foods. Such a diet embodies nutritional density and is less likely to be accompanied by excessive energy intake than the standard American diet consisting of increased intakes of processed foods, fatty red meat, and sweetened foods and beverages. Women who report "prudent" or "health-conscious" eating patterns before and/or during pregnancy may have fewer pregnancy complications and adverse child health outcomes. Comprehensive nutritional supplementation (multiple micronutrients plus balanced protein energy) among women with inadequate nutrition has been associated with improved birth outcomes, including decreased rates of low birthweight. A diet that severely restricts any macronutrient class should be avoided, specifically the ketogenic diet that lacks carbohydrates, the Paleo diet because of dairy restriction, and any diet characterized by excess saturated fats. User-friendly tools to facilitate a quick evaluation of dietary patterns with clear guidance on how to address dietary inadequacies and embedded support from trained healthcare providers are urgently needed. Recent evidence has shown that although excessive gestational weight gain predicts adverse perinatal outcomes among women with normal weight, the degree of prepregnancy obesity predicts adverse perinatal outcomes to a greater degree than gestational weight gain among women with obesity. Furthermore, low body mass index and insufficient gestational weight gain are associated with poor perinatal outcomes. Observational data have shown that first-trimester gain is the strongest predictor of adverse outcomes. Interventions beginning in early pregnancy or preconception are needed to prevent downstream complications for mothers and their children. For neonates, human milk provides personalized nutrition and is associated with short- and long-term health benefits for infants and mothers. Eating a healthy diet is a way for lactating mothers to support optimal health for themselves and their infants.


Assuntos
Ganho de Peso na Gestação , Dieta , Feminino , Humanos , Lactação , Masculino , Estado Nutricional , Obesidade , Gravidez , Verduras , Aumento de Peso
14.
J Physiol ; 600(3): 655-670, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34802149

RESUMO

At birth, the mammalian myocardium switches from using carbohydrates as the primary energy substrate to free fatty acids as the primary fuel. Thus, a compromised switch could jeopardize normal heart function in the neonate. Placental embolization in sheep is a reliable model of intrauterine growth restriction (IUGR). It leads to suppression of both proliferation and terminal differentiation of cardiomyocytes. We hypothesized that the expression of genes regulating cardiac fatty acid metabolism would be similarly suppressed in IUGR, leading to compromised processing of lipids. Following 10 days of umbilicoplacental embolization in fetal sheep, IUGR fetuses had elevated circulating long-chain fatty acylcarnitines compared with controls (C14: CTRL 0.012 ± 0.005 nmol/ml vs. IUGR 0.018 ± 0.005 nmol/ml, P < 0.05; C18: CTRL 0.027 ± 0.009 nmol/mol vs. IUGR 0.043 ± 0.024 nmol/mol, P < 0.05, n = 12 control, n = 12 IUGR) indicative of impaired fatty acid metabolism. Uptake studies using fluorescently tagged BODIPY-C12-saturated free fatty acid in live, isolated cardiomyocytes showed lipid droplet area and number were not different between control and IUGR cells. mRNA levels of sarcolemmal fatty acid transporters (CD36, FATP6), acylation enzymes (ACSL1, ACSL3), mitochondrial transporter (CPT1), ß-oxidation enzymes (LCAD, HADH, ACAT1), tricarboxylic acid cycle enzyme (IDH), esterification enzymes (PAP, DGAT) and regulator of the lipid droplet formation (BSCL2) gene were all suppressed in IUGR myocardium (P < 0.05). However, protein levels for these regulatory genes were not different between groups. This discordance between mRNA and protein levels in the stressed myocardium suggests an adaptive protection of key myocardial enzymes under conditions of placental insufficiency. KEY POINTS: The fetal heart relies on carbohydrates in utero and must be prepared to metabolize fatty acids after birth but the effects of compromised fetal growth on the maturation of this metabolic system are unknown. Plasma fatty acylcarnitines are elevated in intrauterine growth-restricted (IUGR) fetuses compared with control fetuses, indicative of impaired fatty acid metabolism in fetal organs. Fatty acid uptake and storage are not different in IUGR cardiomyocytes compared with controls. mRNA levels of genes regulating fatty acid transporter and metabolic enzymes are suppressed in the IUGR myocardium compared with controls, while protein levels remain unchanged. Mismatches in gene and protein expression, and increased circulating fatty acylcarnitines may have long-term implications for offspring heart metabolism and adult health in IUGR individuals. This requires further investigation.


Assuntos
Retardo do Crescimento Fetal , Placenta , Animais , Carnitina/análogos & derivados , Ácidos Graxos , Feminino , Coração Fetal , Placenta/metabolismo , Gravidez , Ovinos
15.
FASEB J ; 35(3): e21423, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33605480

RESUMO

The degree that maternal glycemia affects placental metabolism of trophoblast cell types [cytotrophoblast (CTB) and syncytiotrophoblast (SCT)] in pregnant persons with gestational diabetes mellitus (GDM) is unknown. We tested the hypotheses that (a) hyperglycemia suppresses the metabolic rates of CTB and SCT; and (b) low placental metabolic activity from GDM placentas is due to decreased oxygen consumption of CTB. Trophoblast cells isolated from GDM and non-GDM term placentas were cultured for 8-hour (CTB) and following syncytialization at 72-hour (SCT) in 5 mM of glucose or 25 mM of glucose. Oxygen consumption rates, glycolysis, ATP levels, and lipid droplet morphometries were determined in CTB and SCT. In CTB from GDM placentas compared to control CTB: (a) oxidative phosphorylation was decreased by 44% (41.8 vs 74.2 pmol O2 /min/100 ng DNA, P = .002); (b) ATP content was 39% lower (1.1 × 10-7 vs 1.8 × 10-7  nM/ng DNA, P = .046); and (c) lipid droplets were two times larger (31.0 vs 14.4 µm2 /cell, P < .001) and 1.7 times more numerous (13.5 vs 7.9 lipid droplets/cell, P < .001). Hyperglycemia suppressed CTB glycolysis by 55%-60% (mean difference 20.4 [GDM, P = .008] and 15.4 [non-GDM, P = .029] mpH/min/100 ng DNA). GDM SCT was not metabolically different from non-GDM SCT. However, GDM SCT had significantly decreased expression of genes associated with differentiation including hCG, GCM1, and syncytin-1. We conclude that suppressed metabolic activity by the GDM placenta is attributable to metabolic dysfunction of CTB, not SCT. Critical placental hormone expression and secretion are decreased in GDM trophoblasts.


Assuntos
Diabetes Gestacional/metabolismo , Hiperglicemia/metabolismo , Lipídeos , Mitocôndrias/metabolismo , Diferenciação Celular , Feminino , Glucose/metabolismo , Glicólise/fisiologia , Humanos , Fosforilação Oxidativa/efeitos dos fármacos , Consumo de Oxigênio/fisiologia , Placenta/metabolismo , Gravidez , Trofoblastos/metabolismo
16.
J Perinatol ; 41(5): 1007-1013, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33510420

RESUMO

OBJECTIVE: Increased infant birth weight and adiposity are associated with an altered risk of adult chronic diseases. The objective was to investigate the association between maternal dietary fat intake during pregnancy and newborn adiposity. STUDY DESIGN: The study included 79 singleton pregnancies. Associations between maternal dietary fat intake during each trimester and infant adiposity at birth were assessed. RESULT: Average total grams of maternal total dietary fat and unsaturated fat intake during pregnancy correlated with infant percent body fat after adjusting for potential confounding variables (r = 0.23, p = 0.045; r = 0.24, p = 0.037). Maternal average daily intake of total fat, saturated fat, and unsaturated fat during the second trimester of pregnancy were each associated with infant percent body fat (r = 0.25, p = 0.029; r = 0.23, p = 0.046; r = 0.25, p = 0.031; respectively). CONCLUSIONS: The second trimester of pregnancy is a key time period for fetal adipose tissue metabolic programming and therefore a target for nutritional intervention.


Assuntos
Adiposidade , Composição Corporal , Adulto , Peso ao Nascer , Índice de Massa Corporal , Gorduras na Dieta , Feminino , Desenvolvimento Fetal , Humanos , Lactente , Recém-Nascido , Gravidez , Trimestres da Gravidez
18.
Breastfeed Med ; 15(7): 458-464, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32412795

RESUMO

Objective: Women with overweight/obesity have significantly lower rates of exclusive breastfeeding (EBF) at 6 weeks postpartum compared with women of normal weight. We sought to determine whether differences in Baby-Friendly Hospital Initiative (BFHI) adherence, obstetric practices, or social support explain these weight-related EBF disparities. Methods: One hundred forty-two healthy women who intended EBF (61 normal weight, 50 overweight, and 31 obese by preconception body mass index [BMI]) were enrolled in a cross-sectional study. Obstetric data were collected and participants completed modified Infant Feeding Practices Study II surveys at 6 weeks postpartum. Results: Women with obesity were significantly less likely to undergo spontaneous labor and more likely to receive synthetic oxytocin and epidural anesthesia compared with women with overweight or normal weight. Women who were overweight were less likely to report extended family support for breastfeeding compared with women with obesity or normal weight; however, BFHI components and composite BFHI score did not differ by maternal BMI. Furthermore, regardless of BMI, women with greater adherence to BFHI practices were more likely to be EBF at 6 weeks postpartum (p-value <0.001). Nonetheless, at 6 weeks postpartum, women with obesity were expressing milk more frequently and less likely to have met their own breastfeeding goals compared with women with overweight and normal weight. Conclusions: Differences in EBF rates by BMI were not explained by BFHI adherence or obstetric practices. These data suggest physiological differences, rather than intrapartum practices and support services, may explain differences in EBF rates by maternal overweight/obesity.


Assuntos
Aleitamento Materno/estatística & dados numéricos , Lactação/fisiologia , Obesidade Materna/epidemiologia , Período Pós-Parto , Índice de Massa Corporal , Estudos Transversais , Feminino , Humanos , Lactente , Masculino , Mães/estatística & dados numéricos , Sobrepeso/epidemiologia , Gravidez , Apoio Social
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...