Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Neurophysiol ; 127(3): 791-800, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35171737

RESUMO

Otolith organs of the balance system, the saccule and utricle, encode linear acceleration. Integrity of the saccule is commonly assessed using cervical vestibular-evoked myogenic potentials (cVEMPs) arising from an inhibitory reflex along the vestibulospinal pathway. Conventional approaches to eliciting these responses use brief, transient sounds to elicit onset responses. Here we used long-duration amplitude-modulated (AM) tones to elicit cVEMPs (AMcVEMPs) and analyzed their spectral content for evidence of nonlinear processing consistent with known characteristics of vestibular hair cells. Twelve young adults (ages 21-25) with no hearing or vestibular pathologies participated in this study. AMcVEMPs were elicited by bone-conducted AM tones with a 500-Hz carrier frequency. Eighteen modulation frequencies were used between 7 and 403 Hz. All participants had robust distortion products at harmonics of the modulation frequency. Total harmonic distortion ranged from approximately 10 to 80%. AMcVEMPs contain harmonic distortion products consistent with vestibular hair cell nonlinearities, and this new approach to studying the otolith organs may provide a noninvasive, in vivo method to study nonlinearity of vestibular hair cells in humans.NEW & NOTEWORTHY The otolith balance organs of humans are assessed for basic science and clinical applications by using vestibular-evoked myogenic potentials (VEMPs). Traditionally, VEMPs are elicited with brief, transient sounds to study onset responses. We used long-duration sounds to elicit steady-state VEMPs. This allowed us to measure nonlinear distortion products, consistent with nonlinear processing in vestibular hair cells. This new approach may help to better understand links between otolith organs and balance function.


Assuntos
Potenciais Evocados Miogênicos Vestibulares , Vestíbulo do Labirinto , Adulto , Audição , Humanos , Sáculo e Utrículo , Potenciais Evocados Miogênicos Vestibulares/fisiologia , Vestíbulo do Labirinto/fisiologia , Adulto Jovem
2.
J Assoc Res Otolaryngol ; 21(5): 445-461, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32761291

RESUMO

Cervical vestibular evoked myogenic potentials (cVEMPs) are usually elicited by transient tonebursts, but when elicited by amplitude-modulated (AM) tones, they can provide new information about cVEMPs. Previous reports of cVEMPs elicited by AM tones, or AMcVEMPs, have not systematically examined the effects of tonic EMG activation on their response properties. Fourteen young, healthy female adults (ages 20-24) with clinically normal audiograms participated in this study. AMcVEMPs were elicited with bone-conducted 500 Hz tones amplitude modulated at a rate of 37 Hz and recorded for five different EMG targets ranging from 0 to 90 µV. Amplitude increased linearly as tonic EMG activation increased. Signal-to-noise ratio (SNR) was minimal at 0 µV, but robust and with equivalent values from 30 to 90 µV; phase coherence and EMG-corrected amplitude had findings similar to SNR across EMG target levels. Interaural asymmetry ratios for SNR and phase coherence were substantially lower than those for raw or corrected amplitude. AMcVEMP amplitude scaled with tonic EMG activation similar to transient cVEMPs. Signal-to-noise ratio, phase coherence, and EMG-corrected amplitude plateaued across a range of EMG values, suggesting that these properties of the response reach their maximum values at relatively low levels of EMG activation and that higher levels of EMG activation are not necessary to record robust AMcVEMPs.


Assuntos
Potenciais Evocados Miogênicos Vestibulares , Eletromiografia , Feminino , Humanos , Razão Sinal-Ruído , Adulto Jovem
3.
Ear Hear ; 41(4): 847-854, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31613822

RESUMO

OBJECTIVES: Bone-conducted vestibular evoked myogenic potentials (VEMPs) are tuned to have their maximum amplitude in response to tone bursts at or below 250 Hz. The low-frequency limitations of clinical bone vibrators have not been established for transient, tone burst stimuli at frequencies that are optimal for eliciting VEMPs. DESIGN: Tone bursts with frequencies of 250 to 2000 Hz were delivered to B71 and B81 bone vibrators and their output was examined using an artificial mastoid. The lower-frequency limit of the transducers was evaluated by examining the spectral output of the bone vibrators. Maximum output levels were evaluated by measuring input-output functions across a range of stimulus levels. RESULTS: Both the B71 and B81 could produce transient tone bursts with frequency as low as 400 Hz. However, tone bursts with frequencies of 250 and 315 Hz resulted in output with peak spectral energy at approximately 400 Hz. From 500 to 2000 Hz, maximum output levels within the linear range were between 120 and 128 dB peak force level. The newer B81 bone vibrator had a maximum output approximately 5 dB higher than the B71 at several frequencies. CONCLUSIONS: These findings demonstrate that both transducers can reach levels appropriate to elicit bone-conducted VEMPs, but the low-frequency limitations of these clinical bone vibrators limit tone burst frequency to approximately 400 Hz when attempting to stimulate the otolith organs via tone bursts.


Assuntos
Potenciais Evocados Miogênicos Vestibulares , Vestíbulo do Labirinto , Estimulação Acústica , Humanos , Processo Mastoide
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...