Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Science ; 314(5803): 1272-6, 2006 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-17124317

RESUMO

Temperature gradients in a low-shear-velocity province in the lowermost mantle (D'' region) beneath the central Pacific Ocean were inferred from the observation of a rapid S-wave velocity increase overlying a rapid decrease. These paired seismic discontinuities are attributed to a phase change from perovskite to post-perovskite and then back to perovskite as the temperature increases with depth. Iron enrichment could explain the occurrence of post-perovskite several hundred kilometers above the core-mantle boundary in this warm, chemically distinct province. The double phase-boundary crossing directly constrains the lowermost mantle temperature gradients. Assuming a standard but unconstrained choice of thermal conductivity, the regional core-mantle boundary heat flux (approximately 85 +/- 25 milliwatts per square meter), comparable to the average at Earth's surface, was estimated, along with a lower bound on global core-mantle boundary heat flow in the range of 13 +/- 4 terawatts. Mapped velocity-contrast variations indicate that the lens of post-perovskite minerals thins and vanishes over 1000 kilometers laterally toward the margin of the chemical distinct region as a result of a approximately 500-kelvin temperature increase.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA