Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 290(46): 27829-40, 2015 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-26396185

RESUMO

The sulfhydryl oxidase Erv1 partners with the oxidoreductase Mia40 to import cysteine-rich proteins in the mitochondrial intermembrane space. In Saccharomyces cerevisiae, Erv1 has also been implicated in cytosolic Fe-S protein maturation and iron regulation. To investigate the connection between Erv1/Mia40-dependent mitochondrial protein import and cytosolic Fe-S cluster assembly, we measured Mia40 oxidation and Fe-S enzyme activities in several erv1 and mia40 mutants. Although all the erv1 and mia40 mutants exhibited defects in Mia40 oxidation, only one erv1 mutant strain (erv1-1) had significantly decreased activities of cytosolic Fe-S enzymes. Further analysis of erv1-1 revealed that it had strongly decreased glutathione (GSH) levels, caused by an additional mutation in the gene encoding the glutathione biosynthesis enzyme glutamate cysteine ligase (GSH1). To address whether Erv1 or Mia40 plays a role in iron regulation, we measured iron-dependent expression of Aft1/2-regulated genes and mitochondrial iron accumulation in erv1 and mia40 strains. The only strain to exhibit iron misregulation is the GSH-deficient erv1-1 strain, which is rescued with addition of GSH. Together, these results confirm that GSH is critical for cytosolic Fe-S protein biogenesis and iron regulation, whereas ruling out significant roles for Erv1 or Mia40 in these pathways.


Assuntos
Citosol/metabolismo , Glutationa/metabolismo , Proteínas Ferro-Enxofre/metabolismo , Ferro/metabolismo , Mitocôndrias/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Proteínas Mitocondriais/metabolismo , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Sequência de Aminoácidos , Glutamato-Cisteína Ligase/metabolismo , Glutationa/deficiência , Proteínas de Transporte da Membrana Mitocondrial/genética , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial , Proteínas Mitocondriais/genética , Dados de Sequência Molecular , Mutação , Oxirredução , Oxirredutases/metabolismo , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/genética , Transporte Proteico , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/ultraestrutura , Proteínas de Saccharomyces cerevisiae/genética
2.
Microbiol Res ; 171: 65-72, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25644954

RESUMO

PII proteins are signal transduction that sense cellular nitrogen status and relay this signals to other targets. Azospirillum brasilense is a nitrogen fixing bacterium, which associates with grasses and cereals promoting beneficial effects on plant growth and crop yields. A. brasilense contains two PII encoding genes, named glnB and glnZ. In this paper, glnB was mutagenised in order to identify amino acid residues involved in GlnB signaling. Two variants were obtained by random mutagenesis, GlnBL13P and GlnBV100A and a site directed mutant, GlnBY51F, was obtained. Their ability to complement nitrogenase activity of glnB mutant strains of A. brasilense were determined. The variant proteins were also overexpressed in Escherichia coli, purified and characterized biochemically. None of the GlnB variant forms was able to restore nitrogenase activity in glnB mutant strains of A. brasilense LFH3 and 7628. The purified GlnBY51F and GlnBL13P proteins could not be uridylylated by GlnD, whereas GlnBV100A was uridylylated but at only 20% of the rate for wild type GlnB. Biochemical and computational analyses suggest that residue Leu13, located in the α helix 1 of GlnB, is important to maintain GlnB trimeric structure and function. The substitution V100A led to a lower affinity for ATP binding. Together the results suggest that NifA activation requires uridylylated GlnB bound to ATP.


Assuntos
Azospirillum brasilense/genética , Azospirillum brasilense/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Mutação , Proteínas PII Reguladoras de Nitrogênio/genética , Fatores de Transcrição/metabolismo , Trifosfato de Adenosina/metabolismo , Substituição de Aminoácidos , Proteínas de Bactérias/química , Análise Mutacional de DNA , Expressão Gênica , Nitrogenase/genética , Proteínas PII Reguladoras de Nitrogênio/química , Ligação Proteica , Conformação Proteica
3.
J Biol Chem ; 289(34): 23264-74, 2014 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-25006243

RESUMO

An ATP-binding cassette transporter located in the inner mitochondrial membrane is involved in iron-sulfur cluster and molybdenum cofactor assembly in the cytosol, but the transported substrate is unknown. ATM3 (ABCB25) from Arabidopsis thaliana and its functional orthologue Atm1 from Saccharomyces cerevisiae were expressed in Lactococcus lactis and studied in inside-out membrane vesicles and in purified form. Both proteins selectively transported glutathione disulfide (GSSG) but not reduced glutathione in agreement with a 3-fold stimulation of ATPase activity by GSSG. By contrast, Fe(2+) alone or in combination with glutathione did not stimulate ATPase activity. Arabidopsis atm3 mutants were hypersensitive to an inhibitor of glutathione biosynthesis and accumulated GSSG in the mitochondria. The growth phenotype of atm3-1 was strongly enhanced by depletion of the mitochondrion-localized, GSH-dependent persulfide oxygenase ETHE1, suggesting that the physiological substrate of ATM3 contains persulfide in addition to glutathione. Consistent with this idea, a transportomics approach using mass spectrometry showed that glutathione trisulfide (GS-S-SG) was transported by Atm1. We propose that mitochondria export glutathione polysulfide, containing glutathione and persulfide, for iron-sulfur cluster assembly in the cytosol.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Proteínas de Arabidopsis/metabolismo , Sequência Conservada , Citosol/metabolismo , Glutationa/metabolismo , Metais/metabolismo , Proteínas Mitocondriais/fisiologia , Proteínas de Saccharomyces cerevisiae/metabolismo , Sulfetos/química , Transportadores de Cassetes de Ligação de ATP/química , Transportadores de Cassetes de Ligação de ATP/genética , Adenosina Trifosfatases/metabolismo , Sequência de Aminoácidos , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Transporte Biológico , Glutationa/biossíntese , Glutationa/química , Dados de Sequência Molecular , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Homologia de Sequência de Aminoácidos
4.
Plant Physiol ; 165(1): 92-104, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24692429

RESUMO

The sulfur dioxygenase ETHYLMALONIC ENCEPHALOPATHY PROTEIN1 (ETHE1) catalyzes the oxidation of persulfides in the mitochondrial matrix and is essential for early embryo development in Arabidopsis (Arabidopsis thaliana). We investigated the biochemical and physiological functions of ETHE1 in plant metabolism using recombinant Arabidopsis ETHE1 and three transfer DNA insertion lines with 50% to 99% decreased sulfur dioxygenase activity. Our results identified a new mitochondrial pathway catalyzing the detoxification of reduced sulfur species derived from cysteine catabolism by oxidation to thiosulfate. Knockdown of the sulfur dioxygenase impaired embryo development and produced phenotypes of starvation-induced chlorosis during short-day growth conditions and extended darkness, indicating that ETHE1 has a key function in situations of high protein turnover, such as seed production and the use of amino acids as alternative respiratory substrates during carbohydrate starvation. The amino acid profile of mutant plants was similar to that caused by defects in the electron-transfer flavoprotein/electron-transfer flavoprotein:ubiquinone oxidoreductase complex and associated dehydrogenases. Thus, in addition to sulfur amino acid catabolism, ETHE1 also affects the oxidation of branched-chain amino acids and lysine.


Assuntos
Aminoácidos/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/embriologia , Arabidopsis/enzimologia , Metabolismo dos Carboidratos , Dioxigenases/metabolismo , Mitocôndrias/enzimologia , Sementes/embriologia , Arabidopsis/crescimento & desenvolvimento , DNA Bacteriano/genética , Técnicas de Silenciamento de Genes , Glutationa/metabolismo , Redes e Vias Metabólicas , Modelos Biológicos , Mutagênese Insercional/genética , Oxirredução , Fenótipo , Sementes/enzimologia , Especificidade por Substrato , Sulfetos/metabolismo , Sulfitos/metabolismo , Enxofre/metabolismo
5.
Front Microbiol ; 5: 731, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25566239

RESUMO

PII proteins are pivotal players in the control of nitrogen metabolism in bacteria and archaea, and are also found in the plastids of plants. PII proteins control the activities of a diverse range of enzymes, transcription factors and membrane transport proteins, and their regulatory effect is achieved by direct interaction with their target. Many, but by no means all, PII proteins are subject to post-translational modification of a residue within the T-loop of the protein. The protein's modification state is influenced by the cellular nitrogen status and in the past this has been considered to regulate PII activity by controlling interaction with target proteins. However, the fundamental ability of PII proteins to respond to the cellular nitrogen status has been shown to be dependent on binding of key effector molecules, ATP, ADP, and 2-oxoglutarate which brings into question the precise role of post-translational modification. In this study we have used the Escherichia coli PII protein GlnK to examine the influence of post-translational modification (uridylylation) on the interaction between GlnK and its cognate target the ammonia channel protein AmtB. We have compared the interaction with AmtB of wild-type GlnK and a variant protein, GlnKTyr51Ala, that cannot be uridylylated. This analysis was carried out both in vivo and in vitro and showed that association and dissociation of the GlnK-AmtB complex is not dependent on the uridylylation state of GlnK. However, our in vivo studies show that post-translational modification of GlnK does influence the dynamics of its interaction with AmtB.

6.
Proc Natl Acad Sci U S A ; 110(32): 12948-53, 2013 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-23818625

RESUMO

P(II) proteins are one of the most widespread families of signal transduction proteins in nature, being ubiquitous throughout bacteria, archaea, and plants. In all these organisms, P(II) proteins coordinate many facets of nitrogen metabolism by interacting with and regulating the activities of enzymes, transcription factors, and membrane transport proteins. The primary mode of signal perception by P(II) proteins derives from their ability to bind the effector molecules 2-oxoglutarate (2-OG) and ATP or ADP. The role of 2-OG as an indicator of cellular nitrogen status is well understood, but the function of ATP/ADP binding has remained unresolved. We have now shown that the Escherichia coli P(II) protein, GlnK, has an ATPase activity that is inhibited by 2-OG. Hence, when a drop in the cellular 2-OG pool signals nitrogen sufficiency, 2-OG depletion of GlnK causes bound ATP to be hydrolyzed to ADP, leading to a conformational change in the protein. We propose that the role of ATP/ADP binding in E. coli GlnK is to effect a 2-OG-dependent molecular switch that drives a conformational change in the T loops of the P(II) protein. We have further shown that two other P(II) proteins, Azospirillum brasilense GlnZ and Arabidopsis thaliana P(II), have a similar ATPase activity, and we therefore suggest that this switch mechanism is likely to be a general property of most members of the P(II) protein family.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas de Escherichia coli/metabolismo , Ácidos Cetoglutáricos/metabolismo , Nucleotidiltransferases/metabolismo , Proteínas PII Reguladoras de Nitrogênio/metabolismo , Difosfato de Adenosina/metabolismo , Adenosina Trifosfatases/genética , Trifosfato de Adenosina/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas de Transporte de Cátions/genética , Proteínas de Transporte de Cátions/metabolismo , Cromatografia Líquida de Alta Pressão , Cromatografia em Camada Fina , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Hidrólise , Mutação , Nucleotidiltransferases/genética , Proteínas PII Reguladoras de Nitrogênio/genética , Ligação Proteica
7.
J Biol Chem ; 285(40): 31037-45, 2010 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-20639578

RESUMO

P(II) proteins are one of the most widespread families of signal transduction proteins in nature, being ubiquitous throughout bacteria, archaea, and plants. They play a major role in coordinating nitrogen metabolism by interacting with, and regulating the activities of, a variety of enzymes, transcription factors, and membrane transport proteins. The regulatory properties of P(II) proteins derive from their ability to bind three effectors: ATP, ADP, and 2-oxoglutarate. However, a clear model to integrate physiological changes with the consequential structural changes that mediate P(II) interaction with a target protein has so far not been developed. In this study, we analyzed the fluctuations in intracellular effector pools in Escherichia coli during association and dissociation of the P(II) protein GlnK with the ammonia channel AmtB. We determined that key features promoting AmtB-GlnK complex formation are the rapid drop in the 2-oxoglutarate pool upon ammonium influx and a simultaneous, but transient, change in the ATP/ADP ratio. We were also able to replicate AmtB-GlnK interactions in vitro using the same effector combinations that we observed in vivo. This comprehensive data set allows us to propose a model that explains the way in which interactions between GlnK and its effectors influence the conformation of GlnK and thereby regulate its interaction with AmtB.


Assuntos
Difosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Proteínas de Transporte de Cátions/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Ácidos Cetoglutáricos/metabolismo , Modelos Biológicos , Complexos Multiproteicos/metabolismo , Nucleotidiltransferases/metabolismo , Proteínas PII Reguladoras de Nitrogênio/metabolismo , Transporte de Íons/fisiologia , Compostos de Amônio Quaternário/metabolismo
8.
FEMS Microbiol Lett ; 258(1): 114-20, 2006 May.
Artigo em Inglês | MEDLINE | ID: mdl-16630265

RESUMO

The Escherichia coli ammonia channel protein, AmtB, is a homotrimeric polytopic inner membrane protein in which each subunit has 11 transmembrane helices. We have shown that the structural gene amtB encodes a preprotein with a signal peptide that is cleaved off to produce a topology with the N-terminus in the periplasm and the C-terminus in the cytoplasm. Deletion of the signal peptide coding region results in significantly lower levels of AmtB accumulation in the membrane but modification of the signal peptidase cleavage site, leading to aberrant cleavage, does not prevent trimer formation and does not inactivate the protein. The presence of a signal peptide is apparently not a conserved feature of all prokaryotic Amt proteins. Comparison of predicted AmtB sequences suggests that while Amt proteins in Gram-negative organisms utilize a signal peptide, the homologous proteins in Gram-positive organisms do not.


Assuntos
Proteínas de Transporte de Cátions/química , Proteínas de Escherichia coli/química , Sinais Direcionadores de Proteínas/fisiologia , Sequência de Aminoácidos , Proteínas de Transporte de Cátions/fisiologia , Proteínas de Escherichia coli/fisiologia , Dados de Sequência Molecular
9.
J Biol Chem ; 279(10): 8530-8, 2004 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-14668330

RESUMO

The Amt proteins are high affinity ammonium transporters that are conserved in all domains of life. In bacteria and archaea the Amt structural genes (amtB) are invariably linked to glnK, which encodes a member of the P(II) signal transduction protein family, proteins that regulate many facets of nitrogen metabolism. We have now shown that Escherichia coli AmtB is inactivated by formation of a membrane-bound complex with GlnK. Complex formation is reversible and occurs within seconds in response to micromolar changes in the extracellular ammonium concentration. Regulation is mediated by the uridylylation/deuridylylation of GlnK in direct response to fluctuations in the intracellular glutamine pool. Furthermore under physiological conditions AmtB activity is required for GlnK deuridylylation. Hence the transporter is an integral part of the signal transduction cascade, and AmtB can be formally considered to act as an ammonium sensor. This system provides an exquisitely sensitive mechanism to control ammonium flux into the cell, and the conservation of glnK linkage to amtB suggests that this regulatory mechanism may occur throughout prokaryotes.


Assuntos
Proteínas de Transporte de Cátions/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteínas Quinases/metabolismo , Compostos de Amônio Quaternário/metabolismo , Fatores de Transcrição/metabolismo , Transporte Biológico , Escherichia coli/metabolismo , Modelos Biológicos , Nucleotidiltransferases , Proteínas PII Reguladoras de Nitrogênio , Ligação Proteica , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...