Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Chem ; 9: 706736, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34858941

RESUMO

We have examined the irradiation response of a titanate and zirconate pyrochlore-both of which are well studied in the literature individually-in an attempt to define the appearance of defect fluorite in zirconate pyrochlores. To our knowledge this study is unique in that it attempts to discover the mechanism of formation by a comparison of the different systems exposed to the same conditions and then examined via a range of techniques that cover a wide length scale. The conditions of approximately 1 displacement per atom via He2+ ions were used to simulate long term waste storage conditions as outlined by previous results from Ewing in a large enough sample volume to allow for neutron diffraction, as not attempted previously. The titanate sample, used as a baseline comparison since it readily becomes amorphous under these conditions behaved as expected. In contrast, the zirconate sample accumulates tensile stress in the absence of detectable strain. We propose this is analogous to the lanthanide zirconate pyrochlores examined by Simeone et al. where they reported the appearance of defect fluorite diffraction patterns due to a reduction in grain size. Radiation damage and stress results in the grains breaking into even smaller crystallites, thus creating even smaller coherent diffraction domains. An (ErNd)2(ZrTi)2O7 pyrochlore was synthesized to examine which mechanism might dominate, amorphization or stress/strain build up. Although strain was detected in the pristine sample via Synchrotron X-ray diffraction it was not of sufficient quality to perform a full analysis on.

2.
Front Chem ; 9: 706269, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34277573

RESUMO

The structure of lead-technetium pyrochlore has been refined in space group F d 3 ¯ m with a = 10.36584(2) Å using a combination of synchrotron X-ray and neutron powder diffraction data and confirmed via Electron Diffraction. The oxide is found to be oxygen deficient with a stoichiometry of Pb2Tc2O7-d. Displacive disorder of the Pb cations is evident from the refinements, as has been observed in Bi2Tc2O7-d. X-ray absorption spectroscopic measurements at the Tc K-edge demonstrate the valence of the Tc is greater than 4.0 as anticipated from the refined oxygen stoichiometry. Raman spectroscopy confirms the presence of disorder leading us to conclude that this pyrochlore is the first example of a valence V technetium oxide.

3.
Appl Radiat Isot ; 176: 109827, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34144410

RESUMO

Current fission-based methods of 99Mo production require single use uranium targets which leads to spent uranium waste. This waste could be reduced if a target is developed that does not require dissolution so that it can be reused for multiple production runs. MCNP6.2 was used to model reusable targets of 20% and 1% enrichment for activity produced, target efficiency and burnup. The 1% enriched target was found to be much more efficient but had a lower activity produced compared to the 20% enriched target. The ideal target design for 99Mo production that optimises efficiency and reusability and reduces the self-shielding effect of UO2 was found to be a target that is made from 1% enriched UO2 with density as high as allowable for sufficient yields, efficient 99Mo extraction and having an irradiation time of 5 days, with the target able to be re-irradiated and re-processed 2-4 times.

4.
Inorg Chem ; 58(15): 10119-10128, 2019 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-31287289

RESUMO

The temperature dependence of the structures of four pertechnetates (ATcO4 A = Ag, Tl, Rb, Cs) from 90 K to their melting points is described. Synchrotron X-ray diffraction measurements show that RbTcO4 undergoes a I41/a to I41/amd transition near 530 K that is associated with a change in the orientation of the TcO4- tetrahedra about the scheelite b axis. AgTcO4 also exhibits a tetragonal scheelite type structure, and this is retained between 90 and 750 K, above which it melted. CsTcO4 has an orthorhombic pseudo-scheelite structure at room temperature and this undergoes a first-order orthorhombic to tetragonal transformation (Pnma to I41/a) near 430 K. TlTcO4 is isostructural with CsTcO4 at 90 K, but the orthorhombic to tetragonal transformation proceeds via an intermediate orthorhombic phase. The different behavior found here and described previously for the analogous Re oxide TlReO4 highlights the differences in the chemistry of these two systems.

5.
Materials (Basel) ; 10(4)2017 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-28772747

RESUMO

A new generation of alloys, which rely on a combination of various strengthening mechanisms, has been developed for application in molten salt nuclear reactors. In the current study, a battery of dispersion and precipitation-strengthened (DPS) NiMo-based alloys containing varying amounts of SiC (0.5-2.5 wt %) were prepared from Ni-Mo-SiC powder mixture via a mechanical alloying (MA) route followed by spark plasma sintering (SPS) and rapid cooling. Neutron Powder Diffraction (NPD), Electron Back Scattering Diffraction (EBSD), and Transmission Electron Microscopy (TEM) were employed in the characterization of the microstructural properties of these in-house prepared NiMo-SiC DPS alloys. The study showed that uniformly-dispersed SiC particles provide dispersion strengthening, the precipitation of nano-scale Ni3Si particles provides precipitation strengthening, and the solid-solution of Mo in the Ni matrix provides solid-solution strengthening. It was further shown that the milling time has significant effects on the microstructural characteristics of these alloys. Increased milling time seems to limit the grain growth of the NiMo matrix by producing well-dispersed Mo2C particles during sintering. The amount of grain boundaries greatly increases the Hall-Petch strengthening, resulting in significantly higher strength in the case of 48-h-milled NiMo-SiC DPS alloys compared with the 8-h-milled alloys. However, it was also shown that the total elongation is considerably reduced in the 48-h-milled NiMo-SiC DPS alloy due to high porosity. The porosity is a result of cold welding of the powder mixture during the extended milling process.

6.
Inorg Chem ; 56(15): 9219-9224, 2017 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-28737380

RESUMO

The structure of TcO2 between 25 and 1000 °C has been determined in situ using X-ray powder diffraction methods and is found to remain monoclinic in space group P21/c. Thermal expansion in TcO2 is highly anisotropic, with negative thermal expansion of the b axis observed above 700 °C. This is the result of an anomalous expansion along the a axis that is a consequence of weakening of the Tc-Tc bonds.

7.
Dalton Trans ; 44(36): 16036-44, 2015 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-26286063

RESUMO

The high temperature structural behaviour of the uranium perovskites Ba2CaUO6 and BaSrCaUO6 has been investigated using a combination of synchrotron X-ray and neutron powder diffraction. Ba2CaUO6 undergoes a complex sequence of structures associated with the progressive loss of cooperative octahedral tilting: P21/n → I2/m → I2/m → I4/m → Fm3[combining macron]m. The observation of the intermediate tetragonal structure, I4/m, in this, contrasts with the previously reported rhombohedral R3[combining macron] intermediate formed by the Ba2SrUO6 oxide. The importance of π-bonding in determining the structural sequence is discussed.

8.
J Phys Condens Matter ; 26(30): 305401, 2014 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-24994668

RESUMO

Rattling dynamics have been identified as fundamental to superconductivity in defect pyrochlore osmates and aluminium vanadium intermetallics, as well as low thermal conductivity in clathrates and filled skutterudites. Combining inelastic neutron scattering (INS) measurements and ab initio molecular dynamics (MD) simulations, we use a new approach to investigate rattling in the Al-doped defect pyrochlore tungstates: AAl0.33W1.67O6 (A = K, Rb, Cs). We find that although all the alkali metals rattle, the rattling of the K atoms is unique, not only among the tungstates but also among the analogous defect osmates, KOs2O6 and RbOs2O6. Detailed analysis of the MD trajectories reveals that two unique features set the K dynamics apart from the rest, namely, (1) quasi one-dimensional local diffusion within a cage, and (2) vibration at a range of frequencies. The local diffusion is driven by strongly anharmonic local potentials around the K atoms exhibiting a double-well structure in the direction of maximum displacement, which is also the direction of local diffusion. On the other hand, vibration at a range of frequencies is a consequence of the strong anisotropy in the local potentials around the K atoms as revealed by directional magnitude spectra. We present evidence to show that it is the smaller size rather than the smaller mass of the K rattler which leads to the unusual dynamics. Finally, we suggest that the occurrence of local diffusion and vibration at a range of frequencies in the dynamics of a single rattler, as found here for the K atoms, may open new possibilities for phonon engineering in thermoelectric materials.

9.
Langmuir ; 28(32): 11802-11, 2012 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-22783818

RESUMO

Bauxite refinery residue (BRR) is a highly caustic, iron hydroxide-rich byproduct from alumina production. Some chemical treatments of BRR reduce soluble alkalinity and lower residue pH (to values <10) and generate a modified BRR (MBRR). MBRR has excellent acid neutralizing (ANC) and trace-metal adsorption capacities, making it particularly useful in environmental remediation. However, soluble ANC makes standard acid-base isoelectric point (IEP) determination difficult. Consequently, the IEP of a BRR and five MBRR derivatives (sulfuric acid-, carbon dioxide-, seawater-, a hybrid neutralization, i.e, partial CO(2) neutralization followed by seawater, and an activated-seawater-neutralized MBRR) were determined using electroacoustic techniques. Residues showed three significantly different groups of IEPs (p < 0.05) based around the neutralization used. Where the primary mineral assemblage is effectively unchanged, the IEPs were not significantly different from BRR (pH 6.6-6.9). However, neutralizations generating neoformational minerals (alkalinity precipitation) significantly increased the IEP to pH 8.1, whereas activation (a removal of some primary mineralogy) significantly lowered the IEP to pH 6.2. Moreover, surface charging curves show that surfaces remain in the ±30 mV surface charge instability range, which provides an explanation as to why MBRRs remove trace metals and oxyanions over a broad pH range, often simultaneously. Importantly, this work shows that minor mineral components in complex mineral systems may have a disproportionate effect on the observable bulk IEP. Furthermore, this work shows the appropriateness of electroacoustic techniques in investigating samples with significant soluble mineral components (e.g., ANC).

10.
Dalton Trans ; 40(41): 10924-6, 2011 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-21897937

RESUMO

The structure of TcCo(2)O(4) has been determined using a combination of synchrotron X-ray and neutron powder diffraction methods. It has an inverse spinel structure where the Tc occupies the octahedral sites. Both the refined Tc-O distance and X-ray absorption spectra suggest the Tc is predominantly trivalent.

11.
Dalton Trans ; 40(27): 7228-33, 2011 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-21655571

RESUMO

The structure of the perovskite SrTcO(3) has been investigated using both synchrotron X-ray and neutron powder diffraction. At room temperature SrTcO(3) is orthorhombic as a consequence of cooperative tilting of the corner sharing TcO(6) octahedra. The tilts are sequentially removed as the sample is heated with the oxide displaying the sequence of structres Pnma→Imma→I4/mcm→Pm ̅3m. Neutron powder diffraction data collected in the temperature range 4-1023 K indicate that SrTcO(3) has G-type antiferromagnetic structure, in which each Tc moment is antiparallel to its six nearest neighbours, below ∼1000 K. The magnetic structure is collinear antiferromagnetic with the technetium moments parallel to c-axis and can be described by the propagation vector k = [0,0,0] and the basis vector (0,0,A(z)). The same magnetic structure is observed in each of the four crystal structures.

12.
Phys Rev Lett ; 106(6): 067201, 2011 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-21405490

RESUMO

We present evidence for possibly the highest magnetic ordering temperature in any compound without 3d transition elements. Neutron powder diffraction measurements, at both time-of-flight and constant wavelength sources, were performed on two independently prepared SrTcO3 powders. SrTcO3 adopts a distorted perovskite structure with G-type antiferromagnetic ordering and has a moment of 1.87(4)µB per Tc cation at room temperature with an extraordinarily high Néel point close to 750 °C. Electronic structure calculations reveal extensive mixing between the technetium 4d states and oxygen states proximal to the Fermi level. This hybridization leads to a close relationship between magnetic ordering temperature and moment formation in SrTcO3.

13.
J Am Chem Soc ; 133(6): 1654-7, 2011 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-21268576

RESUMO

The technetium perovskite CaTcO(3) has been synthesized. Combining synchrotron X-ray and neutron diffraction, we found that CaTcO(3) is an antiferromagnetic with a surprisingly high Neel temperature of ∼800 K. The transition to the magnetic state does not involve a structural change, but there is obvious magnetostriction. Electronic structure calculations confirm the experimental results.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...