Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Platelets ; 30(7): 861-870, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30359164

RESUMO

Large bone defects have always been a big challenge. The use of bone marrow mononuclear cells (BMCs) combined with an osteoconductive scaffold has been proved a good alternative for the treatment of large bone defects. Another autologous source for tissue engineering is platelet rich fibrin (PRF). PRF is a blood concentrate system obtained through a one-step centrifugation. The generated 3D matrix of the PRF clot serves as a reservoir of growth factors. Those growth factors might support the regenerative response of BMC, and therefore the effect of PRF, centrifuged with either high medium (208 g) or low (60 g) relative centrifugation force (RCF) on BMCs was evaluated in vitro in the present study. The two PRF matrices obtained were initially characterized and compared to human serum. Significantly increased concentrations of insulin-like growth factor (IGF), soluble intercellular adhesion molecule-1 (sICAM1) and transforming growth factor (TGF)-ß were found in PRF compared to human serum whereas VEGF concentration was not significantly altered. A dose-response study revealed no further activation of BMC's metabolic activity, if concentration of both PRF matrices exceeded 10% (v/v). Effect of both PRF preparations [10%] on BMC was analyzed after 2, 7, and 14 days in comparison to human serum [10%]. Metabolic activity of BMC increased significantly in all groups on day 14. Furthermore, gene expression of matrix metalloproteinases (MMP)-2, -7, and -9 was significantly stimulated in BMC cultivated with the respective PRF matrices compared to human serum. Apoptotic activity of BMC incubated with PRF was not altered compared to BMC cultivated with serum. In conclusion, PRF could be used as a growth factor delivery system of autologous or allogeneic source with the capability of stimulating cells such as BMC.


Assuntos
Medula Óssea/fisiopatologia , Leucócitos Mononucleares/metabolismo , Fibrina Rica em Plaquetas/citologia , Fibrina Rica em Plaquetas/metabolismo , Engenharia Tecidual/métodos , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...