Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Mol Immunol ; 19(6): 660-686, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35585127

RESUMO

Reactive oxygen species (ROS) are pervasive signaling molecules in biological systems. In humans, a lack of ROS causes chronic and extreme bacterial infections, while uncontrolled release of these factors causes pathologies due to excessive inflammation. Professional phagocytes such as neutrophils (PMNs), eosinophils, monocytes, and macrophages use superoxide-generating NADPH oxidase (NOX) as part of their arsenal of antimicrobial mechanisms to produce high levels of ROS. NOX is a multisubunit enzyme complex composed of five essential subunits, two of which are localized in the membrane, while three are localized in the cytosol. In resting phagocytes, the oxidase complex is unassembled and inactive; however, it becomes activated after cytosolic components translocate to the membrane and are assembled into a functional oxidase. The NOX isoforms play a variety of roles in cellular differentiation, development, proliferation, apoptosis, cytoskeletal control, migration, and contraction. Recent studies have identified NOX as a major contributor to disease pathologies, resulting in a shift in focus on inhibiting the formation of potentially harmful free radicals. Therefore, a better understanding of the molecular mechanisms and the transduction pathways involved in NOX-mediated signaling is essential for the development of new therapeutic agents that minimize the hyperproduction of ROS. The current review provides a thorough overview of the various NOX enzymes and their roles in disease pathophysiology, highlights pharmacological strategies, and discusses the importance of computational modeling for future NOX-related studies.


Assuntos
NADPH Oxidases , Transdução de Sinais , Gerenciamento Clínico , Humanos , NADPH Oxidases/metabolismo , Fagócitos/metabolismo , Espécies Reativas de Oxigênio/metabolismo
2.
Toxicol In Vitro ; 83: 105378, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35550411

RESUMO

Pentachlorophenol (PCP) was once a widely employed organochlorine pesticide and wood preservative in United States. Due to its toxicity, the U.S. Environmental Protection Agency has classified it as a restricted-use pesticide and established as a liver carcinogen. Earlier reports have indicated increased production of inflammatory mediators like IL-1ß and TNF-α by immune cells, including NK cells, lymphocytes, or monocytes -on PCP exposure. Yet, there is only scant information available regarding the detailed molecular mechanisms affected by acute or chronic exposure of humans to PCP. Considering this, we examined PCP-induced inflammation and downstream signaling events in-(a) human lung adenocarcinoma cells (A549) with type II alveolar epithelial characteristics; and (b) human liver carcinoma cells (HepG2). Treatment of these cells with 1 µM and 10 µM concentration of PCP for 24 h duration resulted in a significant induction of cytokines/chemokines including IL-1ß, IL-6, TNF-α, IL-8, CCL2, and CCL5. Assessment of mRNA expression showed upregulated levels of danger-associated molecular patterns (DAMPs)-high mobility group box-1 (HMGB1) and heat shock protein 70 (Hsp70) as well as TLR-4 receptor in PCP-challenged cells. Increased expression of transcription factors-NF-κB and STAT3 provide further insight into the molecular mechanisms underlying PCP-induced toxicity/pathology. Interestingly, antibody-mediated neutralization of DAMPs abrogates PCP-mediated transcriptional induction of cytokines, chemokines and transcription factors in HepG2 and A549 cells. Overall, our findings demonstrate the important role of DAMPs in PCP-induced inflammatory responses.


Assuntos
Pentaclorofenol , Praguicidas , Citocinas/genética , Humanos , Inflamação/metabolismo , NF-kappa B/metabolismo , Pentaclorofenol/toxicidade , Fator de Necrose Tumoral alfa/metabolismo
3.
Arch Toxicol ; 93(10): 2715-2740, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31555878

RESUMO

The aim of this study is to provide a systematic review of the known epigenetic alterations caused by cigarette smoke; establish an evidence-based perspective of their clinical value for screening, diagnosis, and treatment of smoke-related disorders; and discuss the challenges and ethical concerns associated with epigenetic studies. A well-defined, reproducible search strategy was employed to identify relevant literature (clinical, cellular, and animal-based) between 2000 and 2019 based on AMSTAR guidelines. A total of 80 studies were identified that reported alterations in DNA methylation, histone modifications, and miRNA expression following exposure to cigarette smoke. Changes in DNA methylation were most extensively documented for genes including AHRR, F2RL3, DAPK, and p16 after exposure to cigarette smoke. Likewise, miR16, miR21, miR146, and miR222 were identified to be differentially expressed in smokers and exhibit potential as biomarkers for determining susceptibility to COPD. We also identified 22 studies highlighting the transgenerational effects of maternal and paternal smoking on offspring. This systematic review lists the epigenetic events/alterations known to occur in response to cigarette smoke exposure and identifies the major genes and miRNAs that are potential targets for translational research in associated pathologies. Importantly, the limitations and ethical concerns related to epigenetic studies are also highlighted, as are the effects on the ability to address specific questions associated with exposure to tobacco/cigarette smoke. In the future, improved interpretation of epigenetic signatures will lead to their increased use as biomarkers and/or in drug development.


Assuntos
Fumar Cigarros/efeitos adversos , Epigênese Genética , Animais , Fumar Cigarros/genética , Metilação de DNA/genética , Feminino , Código das Histonas/genética , Humanos , MicroRNAs/genética , Gravidez , Efeitos Tardios da Exposição Pré-Natal/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...