Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 284(23): 15640-9, 2009 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-19359244

RESUMO

Stathmin is an important regulator of microtubule polymerization and dynamics. When unphosphorylated it destabilizes microtubules in two ways, by reducing the microtubule polymer mass through sequestration of soluble tubulin into an assembly-incompetent T2S complex (two alpha:beta tubulin dimers per molecule of stathmin), and by increasing the switching frequency (catastrophe frequency) from growth to shortening at plus and minus ends by binding directly to the microtubules. Phosphorylation of stathmin on one or more of its four serine residues (Ser(16), Ser(25), Ser(38), and Ser(63)) reduces its microtubule-destabilizing activity. However, the effects of phosphorylation of the individual serine residues of stathmin on microtubule dynamic instability have not been investigated systematically. Here we analyzed the effects of stathmin singly phosphorylated at Ser(16) or Ser(63), and doubly phosphorylated at Ser(25) and Ser(38), on its ability to modulate microtubule dynamic instability at steady-state in vitro. Phosphorylation at either Ser(16) or Ser(63) strongly reduced or abolished the ability of stathmin to bind to and sequester soluble tubulin and its ability to act as a catastrophe factor by directly binding to the microtubules. In contrast, double phosphorylation of Ser(25) and Ser(38) did not affect the binding of stathmin to tubulin or microtubules or its catastrophe-promoting activity. Our results indicate that the effects of stathmin on dynamic instability are strongly but differently attenuated by phosphorylation at Ser(16) and Ser(63) and support the hypothesis that selective targeting by Ser(16)-specific or Ser(63)-specific kinases provides complimentary mechanisms for regulating microtubule function.


Assuntos
Microtúbulos/fisiologia , Estatmina/farmacologia , Alanina/metabolismo , Animais , Axonema/efeitos dos fármacos , Axonema/fisiologia , Cinética , Microscopia de Vídeo , Microtúbulos/efeitos dos fármacos , Microtúbulos/ultraestrutura , Fosforilação , Fosfosserina/metabolismo , Desnaturação Proteica , Renaturação Proteica , Ouriços-do-Mar , Estatmina/metabolismo , Tubulina (Proteína)/efeitos dos fármacos , Tubulina (Proteína)/metabolismo
2.
J Biol Chem ; 281(4): 2071-8, 2006 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-16317007

RESUMO

Stathmin is a ubiquitous microtubule destabilizing protein that is believed to play an important role linking cell signaling to the regulation of microtubule dynamics. Here we show that stathmin strongly destabilizes microtubule minus ends in vitro at steady state, conditions in which the soluble tubulin and microtubule levels remain constant. Stathmin increased the minus end catastrophe frequency approximately 13-fold at a stathmin:tubulin molar ratio of 1:5. Stathmin steady-state catastrophe-promoting activity was considerably stronger at the minus ends than at the plus ends. Consistent with its ability to destabilize minus ends, stathmin strongly increased the treadmilling rate of bovine brain microtubules. By immunofluorescence microscopy, we also found that stathmin binds to purified microtubules along their lengths in vitro. Co-sedimentation of purified microtubules polymerized in the presence of a 1:5 initial molar ratio of stathmin to tubulin yielded a binding stoichiometry of 1 mol of stathmin per approximately 14.7 mol of tubulin in the microtubules. The results firmly establish that stathmin can increase the steady-state catastrophe frequency by a direct action on microtubules, and furthermore, they indicate that an important regulatory action of stathmin in cells may be to destabilize microtubule minus ends.


Assuntos
Encéfalo/metabolismo , Proteínas Associadas aos Microtúbulos/química , Microtúbulos/metabolismo , Estatmina/fisiologia , Animais , Axônios , Bovinos , Relação Dose-Resposta a Droga , Guanosina Trifosfato/química , Concentração de Íons de Hidrogênio , Hidrólise , Técnicas In Vitro , Microscopia de Fluorescência , Microscopia de Vídeo , Proteínas dos Microtúbulos/química , Movimento , Fosfoproteínas/química , Fosforilação , Polímeros/química , Estatmina/química , Estatmina/metabolismo , Fatores de Tempo
3.
DNA Repair (Amst) ; 2(8): 925-40, 2003 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-12893088

RESUMO

Rad2 family nucleases, identified by sequence similarity within their catalytic domains, function in multiple pathways of DNA metabolism. Three members of the Saccharomyces cerevisiae Rad2 family, Rad2, Rad27, and exonuclease 1 (Exo1), exhibit both 5' exonuclease and flap endonuclease activities. Deletion of RAD27 results in defective Okazaki fragment maturation, DNA repair, and subsequent defects in mutation avoidance and chromosomal stability. However, strains lacking Rad27 are viable. The expression profile of EXO1 during the cell cycle is similar to that of RAD27 and other genes encoding proteins that function in DNA replication and repair, suggesting Exo1 may function as a back up nuclease for Rad27 in DNA replication. We show that overexpression of EXO1 suppresses multiple rad27 null mutation-associated phenotypes derived from DNA replication defects, including temperature sensitivity, Okazaki fragment accumulation, the rate of minichromosome loss, and an elevated mutation frequency. While generally similar findings were observed with RAD2, overexpression of RAD2, but not EXO1, suppressed the MMS sensitivity of the rad27 null mutant cells. This suggests that Rad2 can uniquely complement Rad27 in base excision repair (BER). Furthermore, Rad2 and Exo1 complemented the mutator phenotypes and cell cycle defects of rad27 mutant strains to differing extents, suggesting distinct in vivo nucleic acid substrates.


Assuntos
Instabilidade Cromossômica/genética , DNA/genética , Exodesoxirribonucleases/genética , Expressão Gênica , Saccharomyces cerevisiae/genética , Ciclo Celular/genética , Primers do DNA , Proteínas de Ligação a DNA/genética , Endodesoxirribonucleases/genética , Endonucleases Flap/genética , Immunoblotting , Microscopia de Fluorescência , Mutação/genética , Plasmídeos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Proteínas de Saccharomyces cerevisiae/genética , Temperatura
4.
J Cell Sci ; 116(Pt 3): 561-9, 2003 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-12508116

RESUMO

Dicentric chromosomes undergo breakage during mitosis as a result of the attachment of two centromeres on one sister chromatid to opposite spindle poles. Studies utilizing a conditional dicentric chromosome III in Saccharomyces cerevisiae have shown that dicentric chromosome repair occurs primarily by deletion of one centromere via a RAD52-dependent recombination pathway. We report that dicentric chromosome resolution requires RAD1, a gene involved in the single-strand annealing DNA repair pathway. We additionally show that single-strand annealing repair of a dicentric chromosome can occur in the absence of RAD52. RAD52-independent repair requires the adaptation-defective cdc5-ad allele of the yeast polo kinase and the DNA damage checkpoint gene RAD9. Dicentric chromosome breakage in cdc5-ad rad52 mutant cells is associated with a prolonged mitotic arrest, during which nuclei undergo microtubule-dependent oscillations, accompanied by dynamic changes in nuclear morphology. We further demonstrate that the frequency of spontaneous direct repeat recombination is suppressed in yeast cells treated with benomyl, a drug that perturbs microtubules. Our findings indicate that microtubule-dependent processes facilitate recombination.


Assuntos
Relógios Biológicos/genética , Estruturas do Núcleo Celular/genética , Cromossomos/genética , Reparo do DNA/genética , Proteínas de Drosophila , Endonucleases/genética , Mitose/genética , Saccharomyces cerevisiae/genética , Benomilo/farmacologia , Relógios Biológicos/efeitos dos fármacos , Proteínas de Ciclo Celular/genética , Estruturas do Núcleo Celular/efeitos dos fármacos , Estruturas do Núcleo Celular/metabolismo , Centrômero/genética , Cromossomos/efeitos dos fármacos , Cromossomos/metabolismo , Reparo do DNA/efeitos dos fármacos , Enzimas Reparadoras do DNA , DNA de Cadeia Simples/genética , Proteínas de Ligação a DNA/genética , Relação Dose-Resposta a Droga , Fungicidas Industriais/farmacologia , Microtúbulos/efeitos dos fármacos , Microtúbulos/genética , Proteínas Serina-Treonina Quinases/genética , Proteína Rad52 de Recombinação e Reparo de DNA , Recombinação Genética/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae
5.
Curr Genet ; 41(6): 379-88, 2002 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-12228807

RESUMO

RNA primer removal from Okazaki fragments during lagging-strand replication and the excision of damaged DNA bases requires the action of structure-specific nucleases, such as the mammalian flap endonuclease 1 (FEN-1). This nuclease contains two conserved motifs enriched with acidic amino acid residues that are important for catalytic function. Similar motifs have been identified in nucleases found in viruses, archebacteria, eubacteria, and in eukaryotes ranging from yeast to humans. Unique among these proteins, the putative FEN-1 homologue in Escherichia coli is contained within the N-terminal region of the DNA polymerase I (PolN). To demonstrate that the cellular functions of FEN-1 reside in PolN, we cloned and expressed the amino terminal domain (323 amino acid residues) of PolI in a Saccharomyces cerevisiae strain lacking the FEN-1 homologue RAD27. Overexpression of PolN suppressed, to varying degrees, phenotypes associated with a rad27 null strain. These include temperature sensitivity, Okazaki fragment processing, a mutator phenotype, a G2/M cell cycle arrest, minichromosome loss, and methyl methane sulfonate sensitivity. We purified Rad27 and PolN proteins in order to determine whether differences in their intrinsic nuclease activities or interaction with proliferating cell nuclear antigen (PCNA) could explain the partial suppression of some phenotypes. We found that the in vitro nuclease activities of Rad27 were more potent than those of PolN and the activity of Rad27, but not PolN, was stimulated by PCNA. We conclude that the N-terminal nuclease domain of E. coli polymerase I encodes a functional homologue of FEN-1.


Assuntos
DNA Polimerase I/farmacologia , Escherichia coli/enzimologia , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/efeitos dos fármacos , Sequência Conservada , DNA/farmacologia , DNA Polimerase I/química , Replicação do DNA , Endodesoxirribonucleases/genética , Endodesoxirribonucleases/metabolismo , Endonucleases Flap , Mutação , Estrutura Terciária de Proteína , Proteínas Recombinantes/farmacologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/genética
6.
Mol Biol Cell ; 13(8): 2919-32, 2002 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-12181356

RESUMO

Microtubule dynamics are influenced by interactions of microtubules with cellular factors and by changes in the primary sequence of the tubulin molecule. Mutations of yeast beta-tubulin C354, which is located near the binding site of some antimitotic compounds, reduce microtubule dynamicity greater than 90% in vivo and in vitro. The resulting intrinsically stable microtubules allowed us to determine which, if any, cellular processes are dependent on dynamic microtubules. The average number of cytoplasmic microtubules decreased from 3 in wild-type to 1 in mutant cells. The single microtubule effectively located the bud site before bud emergence. Although spindles were positioned near the bud neck at the onset of anaphase, the mutant cells were deficient in preanaphase spindle alignment along the mother-bud axis. Spindle microtubule dynamics and spindle elongation rates were also severely depressed in the mutants. The pattern and extent of cytoplasmic microtubule dynamics modulation through the cell cycle may reveal the minimum dynamic properties required to support growth. The ability to alter intrinsic microtubule dynamics and determine the in vivo phenotype of cells expressing the mutant tubulin provides a critical advance in assessing the dynamic requirements of an essential gene function.


Assuntos
Núcleo Celular/metabolismo , Microtúbulos/metabolismo , Mutação , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/fisiologia , Tubulina (Proteína)/genética , Ciclo Celular/fisiologia , Citoplasma/metabolismo , Recuperação de Fluorescência Após Fotodegradação , Genes Fúngicos , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Microtúbulos/genética , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Fuso Acromático/metabolismo , Tubulina (Proteína)/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...