Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Cell Neurosci ; 8: 267, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25237295

RESUMO

In certain neurons from different brain regions, a brief burst of action potentials can activate a slow afterdepolarization (sADP) in the presence of muscarinic acetylcholine receptor agonists. The sADP, if suprathreshold, can contribute to persistent non-accommodating firing in some of these neurons. Previous studies have characterized a Ca(2+)-activated non-selective cation (CAN) current (ICAN ) that is thought to underlie the sADP. ICAN depends on muscarinic receptor stimulation and exhibits a dependence on neuronal activity, membrane depolarization and Ca(2+)-influx similar to that observed for the sADP. Despite the widespread occurrence of sADPs in neurons throughout the brain, the molecular identity of the ion channels underlying these events, as well as ICAN , remains uncertain. Here we used a combination of genetic, pharmacological and electrophysiological approaches to characterize the molecular mechanisms underlying the muscarinic receptor-dependent sADP in layer 5 pyramidal neurons of mouse prefrontal cortex. First, we confirmed that in the presence of the cholinergic agonist carbachol a brief burst of action potentials triggers a prominent sADP in these neurons. Second, we confirmed that this sADP requires activation of a PLC signaling cascade and intracellular calcium signaling. Third, we obtained direct evidence that the transient receptor potential (TRP) melastatin 5 channel (TRPM5), which is thought to function as a CAN channel in non-neural cells, contributes importantly to the sADP in the layer 5 neurons. In contrast, the closely related TRPM4 channel may play only a minor role in the sADP.

2.
J Neurosci ; 33(34): 13583-99, 2013 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-23966682

RESUMO

In many cortical neurons, HCN1 channels are the major contributors to Ih, the hyperpolarization-activated current, which regulates the intrinsic properties of neurons and shapes their integration of synaptic inputs, paces rhythmic activity, and regulates synaptic plasticity. Here, we examine the physiological role of Ih in deep layer pyramidal neurons in mouse prefrontal cortex (PFC), focusing on persistent activity, a form of sustained firing thought to be important for the behavioral function of the PFC during working memory tasks. We find that HCN1 contributes to the intrinsic persistent firing that is induced by a brief depolarizing current stimulus in the presence of muscarinic agonists. Deletion of HCN1 or acute pharmacological blockade of Ih decreases the fraction of neurons capable of generating persistent firing. The reduction in persistent firing is caused by the membrane hyperpolarization that results from the deletion of HCN1 or Ih blockade, rather than a specific role of the hyperpolarization-activated current in generating persistent activity. In vivo recordings show that deletion of HCN1 has no effect on up states, periods of enhanced synaptic network activity. Parallel behavioral studies demonstrate that HCN1 contributes to the PFC-dependent resolution of proactive interference during working memory. These results thus provide genetic evidence demonstrating the importance of HCN1 to intrinsic persistent firing and the behavioral output of the PFC. The causal role of intrinsic persistent firing in PFC-mediated behavior remains an open question.


Assuntos
Potenciais de Ação/genética , Canais de Cátion Regulados por Nucleotídeos Cíclicos/metabolismo , Função Executiva/fisiologia , Memória/fisiologia , Neurônios/fisiologia , Canais de Potássio/metabolismo , Córtex Pré-Frontal/citologia , Potenciais de Ação/efeitos dos fármacos , Animais , Comportamento de Escolha/efeitos dos fármacos , Canais de Cátion Regulados por Nucleotídeos Cíclicos/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/fisiologia , Proteínas de Fluorescência Verde/genética , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização , Técnicas In Vitro , Aprendizagem em Labirinto/efeitos dos fármacos , Memória/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neurônios/efeitos dos fármacos , Neurotransmissores/farmacologia , Técnicas de Patch-Clamp , Canais de Potássio/genética , Aprendizagem Seriada/efeitos dos fármacos , Aprendizagem Seriada/fisiologia , Potenciais Sinápticos/efeitos dos fármacos , Potenciais Sinápticos/genética
3.
Neuron ; 72(4): 643-53, 2011 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-22099465

RESUMO

Hippocampal CA1 and CA3 pyramidal neuron place cells encode the spatial location of an animal through localized firing patterns called "place fields." To explore the mechanisms that control place cell firing and their relationship to spatial memory, we studied mice with enhanced spatial memory resulting from forebrain-specific knockout of the HCN1 hyperpolarization-activated cation channel. HCN1 is strongly expressed in CA1 neurons and in entorhinal cortex grid cells, which provide spatial information to the hippocampus. Both CA1 and CA3 place fields were larger but more stable in the knockout mice, with the effect greater in CA1 than CA3. As HCN1 is only weakly expressed in CA3 place cells, their altered activity likely reflects loss of HCN1 in grid cells. The more pronounced changes in CA1 likely reflect the intrinsic contribution of HCN1. The enhanced place field stability may underlie the effect of HCN1 deletion to facilitate spatial learning and memory.


Assuntos
Região CA1 Hipocampal/fisiologia , Região CA3 Hipocampal/fisiologia , Canais de Cátion Regulados por Nucleotídeos Cíclicos/deficiência , Canais de Potássio/deficiência , Potenciais de Ação/genética , Animais , Região CA1 Hipocampal/citologia , Região CA3 Hipocampal/citologia , Canais de Cátion Regulados por Nucleotídeos Cíclicos/genética , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização , Masculino , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurônios/fisiologia , Canais de Potássio/genética , Estabilidade Proteica
4.
Neuropharmacology ; 55(4): 459-63, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18619627

RESUMO

It is well established that activation of group I metabotropic glutamate receptors (mGluRs) produces long-lasting alterations in synaptic efficacy. We now demonstrate that activation of mGluRs can also induce long-term alterations in synchronised network activity that are both induced and expressed in the absence of chemical synaptic transmission. Specifically, in hippocampal slices in which synaptic transmission was eliminated by perfusing with a Ca2+-free medium, the selective group I mGluR agonist 3,5-dihydroxyphenylglycine (DHPG) induced a persistent (>3h) enhancement (>2-fold) of the frequency of synchronised bursting activity. The underlying biochemical mechanism responsible for the induction of this form of plasticity was similar to that for DHPG-induced long-term depression (LTD) in that it required the activation of tyrosine phosphatases. Also, like DHPG-induced LTD, this form of neuronal plasticity could be reversed by application of the mGluR antagonist alpha-methyl-4-carboxyphenylglycine (MCPG). This unusual form of plasticity, which presumably also occurs when synaptic transmission is intact, could contribute to long-term alterations in synchronised activity in hippocampal neuronal networks.


Assuntos
Plasticidade Neuronal/fisiologia , Receptores de Glutamato Metabotrópico/fisiologia , Sinapses/fisiologia , Transmissão Sináptica/fisiologia , Animais , Cálcio/metabolismo , Estimulação Elétrica/métodos , Inibidores Enzimáticos/farmacologia , Antagonistas de Aminoácidos Excitatórios/farmacologia , Glicina/análogos & derivados , Glicina/farmacologia , Hipocampo/citologia , Técnicas In Vitro , Potenciação de Longa Duração/efeitos dos fármacos , Potenciação de Longa Duração/fisiologia , Potenciação de Longa Duração/efeitos da radiação , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/fisiologia , Potenciais da Membrana/efeitos da radiação , Metoxi-Hidroxifenilglicol/análogos & derivados , Metoxi-Hidroxifenilglicol/farmacologia , Plasticidade Neuronal/efeitos dos fármacos , Plasticidade Neuronal/efeitos da radiação , Técnicas de Patch-Clamp , Ratos , Ratos Wistar , Sinapses/efeitos dos fármacos , Sinapses/efeitos da radiação , Transmissão Sináptica/efeitos dos fármacos , Transmissão Sináptica/efeitos da radiação
5.
Epilepsy Res ; 65(1-2): 41-51, 2005 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15979855

RESUMO

GABAergic synaptic transmission plays an important role in the patterning of epileptiform activity. We have previously shown that global loss of GABA(B) receptor function due to transgenic deletion of the GABA(B1) receptor subunit exacerbates epileptiform activity induced by pharmacological manipulations in hippocampal slices. Here we show that a similar hyperexcitable phenotype is observed in hippocampal slices prepared from a transgenic mouse expressing a GABA(B2) receptor subunit lacking its C terminal tail (the DeltaGB2-Ct mouse); a molecular manipulation that also produces complete loss of GABA(B) receptor function. Thus, epileptiform bursts that are sensitive to NMDA receptor antagonists (induced by either the GABA(A) receptor antagonist bicuculline (10muM) or removal of extracellular Mg(2+)) were significantly longer in duration in DeltaGB2-Ct slices relative to WT slices. We now extend these observations to demonstrate that a stimulus train induced bursting (STIB) protocol also evokes significantly longer bicuculline sensitive bursts of activity in DeltaGB2-Ct slices compared to WT. Furthermore, synchronous GABA(A) receptor-mediated potentials recorded in the presence of the potassium channel blocker 4-aminopyridine (4-AP, 100muM) and the ionotropic glutamate receptor antagonists NBQX (20muM) and D-AP5 (50muM) were significantly prolonged in duration in DeltaGB2-Ct versus WT slices. These data suggest that the loss of GABA(B) receptor function in DeltaGB2-Ct hippocampal slices promotes depolarising GABA(A) receptor-mediated events, which in turn, leads to the generation of ictal-like events, which may contribute to the epilepsy phenotype observed in vivo.


Assuntos
Epilepsia/metabolismo , Potenciais Pós-Sinápticos Excitadores/fisiologia , Hipocampo/metabolismo , Receptores de GABA-B/metabolismo , 4-Aminopiridina/farmacologia , Animais , Bicuculina/farmacologia , Interações Medicamentosas , Estimulação Elétrica/métodos , Embrião de Mamíferos , Epilepsia/genética , Antagonistas de Aminoácidos Excitatórios/farmacologia , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Antagonistas GABAérgicos/farmacologia , Deleção de Genes , Técnicas In Vitro , Magnésio/metabolismo , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/fisiologia , Camundongos , Camundongos Knockout , Ácidos Fosfínicos/farmacologia , Bloqueadores dos Canais de Potássio/farmacologia , Propanolaminas/farmacologia , Células Piramidais , Compostos de Quinolínio/farmacologia , Receptores de GABA-B/química , Receptores de GABA-B/deficiência , Fatores de Tempo , Valina/análogos & derivados , Valina/farmacologia
6.
Neuropharmacology ; 43(2): 141-6, 2002 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-12213268

RESUMO

The hippocampus is well known for its susceptibility to epileptic seizures, in part because of its neuronal architecture that facilitates synchronization. Although synaptic networks are important for the genesis and spread of epileptiform activity, synchronization of neuronal activity can occur when action potential-dependent chemical synaptic transmission is absent. In particular, it is possible to induce epileptiform activity by perfusing hippocampal slices with a low-Ca(2+)/high-K(+) mediums. Using extracellular recording in area CA1 we have characterized the effects of metabotropic glutamate receptor (mGluR) activation on this non-synaptic bursting activity. Under control conditions, bursting occurred at intervals of 14-86 s with each burst comprising a long (up to 44 s) negative-going field potential of 2 to 13 mV superimposed upon which was sustained firing of population spikes. Activation of group I mGluRs by (S)-3,5-dihydroxyphenylglycine (DHPG) (25 microM) caused a dramatic increase in burst frequency (up to five-fold), which was accompanied by a decrease in the duration and amplitude of bursts. The selective mGluR(1) antagonist 2-methyl-4-carboxyphenylglycine (LY367385) and the selective mGluR(5) antagonist 2-methyl-6-(phenylethynyl)pyridine (MPEP) both restricted the increase in burst frequency induced by DHPG. However, only LY367385 inhibited the decrease in burst duration and amplitude. Combined application of both antagonists prevented all DHPG-induced changes in bursting activity. These data provide evidence for a role of both mGluR(1) and mGluR(5) subtypes in changing the frequency of non-synaptic bursting, with mGluR(1) alone causing alterations in burst duration and amplitude. These effects are likely to contribute to the group I mGluR-induced changes in synaptic epileptic activity that are already well documented.


Assuntos
Potenciais de Ação/fisiologia , Receptores de Glutamato Metabotrópico/fisiologia , Animais , Epilepsia/fisiopatologia , Feminino , Técnicas In Vitro , Ratos , Ratos Wistar , Receptores de Glutamato Metabotrópico/agonistas , Transmissão Sináptica/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...