Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38952796

RESUMO

Osteoarthritis (OA) poses a significant healthcare burden with limited treatment options. While genome-wide association studies (GWAS) have identified over 100 OA-associated loci, translating these findings into therapeutic targets remains challenging. Integrating expression quantitative trait loci (eQTL), 3D chromatin structure, and other genomic approaches with OA GWAS data offers a promising approach to elucidate disease mechanisms; however, comprehensive eQTL maps in OA-relevant tissues and conditions remain scarce. We mapped gene expression, chromatin accessibility, and 3D chromatin structure in primary human articular chondrocytes in both resting and OA-mimicking conditions. We identified thousands of differentially expressed genes, including those associated with differences in sex and age. RNA-seq in chondrocytes from 101 donors across two conditions uncovered 3782 unique eGenes, including 420 that exhibited strong and significant condition-specific effects. Colocalization with OA GWAS signals revealed 13 putative OA risk genes, 10 of which have not been previously identified. Chromatin accessibility and 3D chromatin structure provided insights into the mechanisms and conditional specificity of these variants. Our findings shed light on OA pathogenesis and highlight potential targets for therapeutic development. Highlights: ∘ Comprehensive analysis of sex- and age-related global gene expression in human chondrocytes revealed differences that correlate with osteoarthritis ∘ First response eQTLs in chondrocytes treated with an OA-related stimulus ∘ Deeply sequenced Hi-C in resting and activated chondrocytes helps connect OA risk variants to their putative causal genes ∘ Colocalization analysis reveals 13 (including 10 novel) putative OA risk genes.

2.
Cell Rep ; 41(5): 111567, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36323252

RESUMO

To infer potential causal relationships between 3D chromatin structure, enhancers, and gene transcription, we mapped each feature in a genome-wide fashion across eight narrowly spaced time points of macrophage activation. Enhancers and genes connected by loops exhibit stronger correlations between histone H3K27 acetylation and expression than can be explained by genomic distance or physical proximity alone. At these looped enhancer-promoter pairs, changes in acetylation at distal enhancers precede changes in gene expression. Changes in gene expression exhibit a directional bias at differential loop anchors; gained loops are associated with increased expression of genes oriented away from the center of the loop, and lost loops are often accompanied by high levels of transcription within the loop boundaries themselves. These results are consistent with a reciprocal relationship where loops can facilitate increased transcription by connecting promoters to distal enhancers, whereas high levels of transcription can impede loop formation.


Assuntos
Cromatina , Genômica , Regiões Promotoras Genéticas/genética , Acetilação , Elementos Facilitadores Genéticos/genética
3.
Genetics ; 222(4)2022 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-36099032

RESUMO

Genome-wide association studies have identified over 100 loci associated with osteoarthritis risk, but the majority of osteoarthritis risk variants are noncoding, making it difficult to identify the impacted genes for further study and therapeutic development. To address this need, we used a multiomic approach and genome editing to identify and functionally characterize potential osteoarthritis risk genes. Computational analysis of genome-wide association studies and ChIP-seq data revealed that chondrocyte regulatory loci are enriched for osteoarthritis risk variants. We constructed a chondrocyte-specific regulatory network by mapping 3D chromatin structure and active enhancers in human chondrocytes. We then intersected these data with our previously collected RNA-seq dataset of chondrocytes responding to fibronectin fragment, a known osteoarthritis trigger. Integration of the 3 genomic datasets with recently reported osteoarthritis genome-wide association study variants revealed a refined set of putative causal osteoarthritis variants and their potential target genes. One of the putative target genes identified was SOCS2, which was connected to a putative causal variant by a 170-kb loop and is differentially regulated in response to fibronectin fragment. CRISPR-Cas9-mediated deletion of SOCS2 in primary human chondrocytes from 3 independent donors led to heightened expression of inflammatory markers after fibronectin fragment treatment. These data suggest that SOCS2 plays a role in resolving inflammation in response to cartilage matrix damage and provides a possible mechanistic explanation for its influence on osteoarthritis risk. In total, we identified 56 unique putative osteoarthritis risk genes for further research and potential therapeutic development.


Assuntos
Condrócitos , Osteoartrite , Humanos , Fibronectinas/genética , Fibronectinas/metabolismo , Estudo de Associação Genômica Ampla , Osteoartrite/genética , Osteoartrite/metabolismo , Cromatina/genética , Cromatina/metabolismo
4.
RNA ; 26(4): 512-528, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31980578

RESUMO

Programmed -1 ribosomal frameshifts (-1 PRFs) are commonly used by viruses to regulate their enzymatic and structural protein levels. Human T-cell leukemia virus type 1 (HTLV-1) is a carcinogenic retrovirus that uses two independent -1 PRFs to express viral enzymes critical to establishing new HTLV-1 infections. How the cis-acting RNA elements in this viral transcript function to induce frameshifting is unknown. The objective of this work was to conclusively define the 3' boundary of and the RNA elements within the HTLV-1 pro-pol frameshift site. We hypothesized that the frameshift site structure was a pseudoknot and that its 3' boundary would be defined by the pseudoknot's 3' end. To test these hypotheses, the in vitro frameshift efficiencies of three HTLV-1 pro-pol frameshift sites with different 3' boundaries were quantified. The results indicated that nucleotides included in the longest construct were essential to highly efficient frameshift stimulation. Interestingly, only this construct could form the putative frameshift site pseudoknot. Next, the secondary structure of this frameshift site was determined. The dominant structure was an H-type pseudoknot which, together with the slippery sequence, stimulated frameshifting to 19.4(±0.3)%. The pseudoknot's critical role in frameshift stimulation was directly revealed by examining the impact of structural changes on HTLV-1 pro-pol -1 PRF. As predicted, mutations that occluded pseudoknot formation drastically reduced the frameshift efficiency. These results are significant because they demonstrate that a pseudoknot is important to HTLV-1 pro-pol -1 PRF and define the frameshift site's 3' boundary.


Assuntos
Mudança da Fase de Leitura do Gene Ribossômico , Vírus Linfotrópico T Tipo 1 Humano/genética , RNA Mensageiro/genética , Regulação Viral da Expressão Gênica , Vírus Linfotrópico T Tipo 1 Humano/metabolismo , Motivos de Nucleotídeos , RNA Mensageiro/química , Ribossomos/metabolismo
5.
RNA ; 25(8): 1047-1058, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31101683

RESUMO

We describe the development and application of a novel series of vectors that facilitate CRISPR-Cas9-mediated genome editing in mammalian cells, which we call CRISPR-Bac. CRISPR-Bac leverages the piggyBac transposon to randomly insert CRISPR-Cas9 components into mammalian genomes. In CRISPR-Bac, a single piggyBac cargo vector containing a doxycycline-inducible Cas9 or catalytically dead Cas9 (dCas9) variant and a gene conferring resistance to Hygromycin B is cotransfected with a plasmid expressing the piggyBac transposase. A second cargo vector, expressing a single-guide RNA (sgRNA) of interest, the reverse-tetracycline TransActivator (rtTA), and a gene conferring resistance to G418, is also cotransfected. Subsequent selection on Hygromycin B and G418 generates polyclonal cell populations that stably express Cas9, rtTA, and the sgRNA(s) of interest. We show that CRISPR-Bac can be used to knock down proteins of interest, to create targeted genetic deletions with high efficiency, and to activate or repress transcription of protein-coding genes and an imprinted long noncoding RNA. The ratio of sgRNA-to-Cas9-to-transposase can be adjusted in transfections to alter the average number of cargo insertions into the genome. sgRNAs targeting multiple genes can be inserted in a single transfection. CRISPR-Bac is a versatile platform for genome editing that simplifies the generation of mammalian cells that stably express the CRISPR-Cas9 machinery.


Assuntos
Edição de Genes/métodos , Plasmídeos/genética , Transposases/metabolismo , Animais , Sistemas CRISPR-Cas , Regulação da Expressão Gênica , Engenharia Genética , Humanos , Transposases/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...