Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 22598, 2023 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-38114514

RESUMO

A poor outcome for cholangiocarcinoma (CCA) patients is still a clinical challenge. CCA is typically recognized by the desmoplastic nature, which accounts for its malignancy. Among various extracellular matrix proteins, laminin is the most potent inducer for CCA migration. Herein, we accessed the expression profiles of laminin gene family and explored the significance of the key laminin subunit on CCA aggressiveness. Of all 11 laminin genes, LAMA3, LAMA5, LAMB3 and LAMC2 were concordantly upregulated based on the analysis of multiple public transcriptomic datasets and also overexpressed in Thai CCA cell lines and patient tissues in which LAMA3A upregulated in the highest frequency (97%) of the cases. Differential expression genes (DEGs) analysis of low and high laminin signature groups revealed LAMA3 as the sole common DEG in all investigated datasets. Restratifying CCA samples according to LAMA3 expression indicated the association of LAMA3 in the focal adhesion pathway. Silencing LAMA3 revealed that it plays important roles in CCA cell proliferation, adhesion, migration and epithelial-to-mesenchymal transition. Taken together, this research signifies the roles of dysregulated ECM homeostasis in CCA malignancy and highlights, for the first time, the potential usage of LAMA3 as the diagnostic biomarker and the therapeutic target to tackle the CCA stromal.


Assuntos
Neoplasias dos Ductos Biliares , Colangiocarcinoma , Humanos , Moléculas de Adesão Celular/metabolismo , Laminina/metabolismo , Colangiocarcinoma/patologia , Proliferação de Células/genética , Neoplasias dos Ductos Biliares/patologia , Ductos Biliares Intra-Hepáticos/patologia , Linhagem Celular Tumoral , Movimento Celular/genética , Regulação Neoplásica da Expressão Gênica
2.
Bioengineering (Basel) ; 10(2)2023 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-36829705

RESUMO

Cell sheet engineering, a scaffold-free tissue fabrication technique, has proven to be an important breakthrough technology in regenerative medicine. Over the past two decades, the field has developed rapidly in terms of investigating fabrication techniques and multipurpose applications in regenerative medicine and biological research. This review highlights the most important achievements in cell sheet engineering to date. We first discuss cell sheet harvesting systems, which have been introduced in temperature-responsive surfaces and other systems to overcome the limitations of conventional cell harvesting methods. In addition, we describe several techniques of cell sheet transfer for preclinical (in vitro and in vivo) and clinical trials. This review also covers cell sheet cryopreservation, which allows short- and long-term storage of cells. Subsequently, we discuss the cell sheet properties of angiogenic cytokines and vasculogenesis. Finally, we discuss updates to various applications, from biological research to clinical translation. We believe that the present review, which shows and compares fundamental technologies and recent advances in cell engineering, can potentially be helpful for new and experienced researchers to promote the further development of tissue engineering in different applications.

3.
Cell Adh Migr ; 15(1): 152-165, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34014802

RESUMO

Extensive desmoplasia in cholangiocarcinoma (CCA) is associated with tumor aggressiveness, indicating a need for further understanding of CCA cell-matrix interaction. This study demonstrated laminin as the most potent attractant for CCA cell migration and the vast elevation of its receptor integrin ß4 (ITGB4) in CCA cell lines. Besides, their high expressions in CCA tissues were correlated with lymphatic invasion and the presence of ITGB4 was also associated with short survival time. ITGB4 silencing revealed it as the receptor for laminin-induced HuCCA-1 migration, but KKU-213 utilized 37/67-kDa laminin receptor (LAMR) instead. These findings highlight the role of ITGB4 and LAMR in transducing laminin induction of CCA cell migration and the potential of ITGB4 as diagnostic and prognostic biomarkers for CCA.


Assuntos
Movimento Celular/fisiologia , Colangiocarcinoma/metabolismo , Colangiocarcinoma/patologia , Integrina beta4/metabolismo , Laminina/metabolismo , Receptores de Laminina/metabolismo , Biomarcadores Tumorais/metabolismo , Linhagem Celular Tumoral , Feminino , Humanos , Metástase Linfática/patologia , Masculino , Pessoa de Meia-Idade , Metástase Neoplásica/patologia
4.
J Biosci Bioeng ; 131(6): 686-695, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33775542

RESUMO

Angiogenesis is a pressing issue in tissue engineering associated with restoration of blood supply to ischemic tissues and promotion of rapid vascularization of tissue-engineered grafts. Fibroblast growth factor-2 (FGF-2) plays a vital role in processes such as angiogenesis and is an attractive candidate for tissue engineering. While skeletal muscle tissue engineering is established, the role of FGF-2 in endothelial function to promote angiogenesis after transplantation is unclear. Here, a culture system comprising a five-layered sheet of human skeletal muscle cells co-incubated on green fluorescent protein-expressing human umbilical vein endothelial cells (GFP-HUVECs) mimicking in vivo angiogenesis was used to investigate the role of FGF-2 in vascularization of engineered tissues. The basal level of FGF-2 in cultured media of skeletal muscle cell sheets was undetectable. Therefore, cell sheets co-incubated with GFP-HUVECs were exogenously treated with 10 ng/mL FGF-2, and endothelial network formation was evaluated. After prolonged culture, the endothelial network length and connectivity increased following treatment with FGF-2 as compared with control treatment. The numbers of medium and long endothelial networks significantly increased inside the sheet longer than 0.2 and 0.4 cm, respectively, after FGF-2 treatment. Time-lapse microscopy monitoring dynamic endothelial behavior revealed that FGF-2-mediated maintenance of endothelial connection and retardation of endothelial network disconnection after 72 h. The present study suggests the precise role of FGF-2 in maintaining endothelial connection and the extent of the endothelial network in skeletal muscle cell sheets. This understanding can be applied to design in vitro pre-vascularized tissue and graft integration prospects.


Assuntos
Comunicação Celular/efeitos dos fármacos , Fator 2 de Crescimento de Fibroblastos/farmacologia , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Músculo Esquelético/efeitos dos fármacos , Células Cultivadas , Técnicas de Cocultura , Meios de Cultura/química , Meios de Cultura/farmacologia , Fator 2 de Crescimento de Fibroblastos/metabolismo , Células Endoteliais da Veia Umbilical Humana/citologia , Células Endoteliais da Veia Umbilical Humana/fisiologia , Humanos , Músculo Esquelético/citologia , Músculo Esquelético/fisiologia , Neovascularização Fisiológica/efeitos dos fármacos , Neovascularização Fisiológica/fisiologia , Organoides/citologia , Organoides/efeitos dos fármacos , Organoides/fisiologia , Engenharia Tecidual/métodos
5.
Front Bioeng Biotechnol ; 8: 578140, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33072729

RESUMO

Skeletal muscle comprises a heterogeneous population of myoblasts and fibroblasts. Autologous skeletal muscle myoblasts are transplanted to patients with ischemia to promote cardiac regeneration. In damaged hearts, various cytokines secreted from the skeletal muscle myoblasts promote angiogenesis and consequently the recovery of cardiac functions. However, the effect of skeletal muscle fibroblasts co-cultured with skeletal muscle myoblasts on angiogenic cytokine production and angiogenesis has not been fully understood. To investigate these effects, production of vascular endothelial growth factor (VEGF) and hepatocyte growth factor (HGF) was measured using the culture medium of monolayers prepared from various cell densities (mono-culture) and proportions (co-culture) of human skeletal muscle myoblasts (HSMMs) and human skeletal muscle fibroblasts (HSMFs). HSMM and HSMF mono-cultures produced VEGF, whereas HSMF mono-culture produced HGF. The VEGF productivity observed in a monolayer comprising low proportion of HSMFs was two-fold greater than that of HSMM and HSMF mono-cultures. The production of VEGF in HSMMs but not in HSMFs was directly proportional to the cell density. VEGF productivity in non-confluent cells with low cell-to-cell contact was higher than that in confluent cells with high cell-to-cell contact. The dynamic migration of cells in a monolayer was examined to analyze the effect of HSMFs on myoblast-to-myoblast contact. The random and rapid migration of HSMFs affected the directional migration of surrounding HSMMs, which disrupted the myoblast alignment. The effect of heterogeneous populations of skeletal muscle cells on angiogenesis was evaluated using human umbilical vein endothelial cells (HUVECs) incubated with fabricated multilayer HSMM sheets comprising various proportions of HSMFs. Co-culturing HSMFs in HSMM sheet at suitable ratio (30 or 40%) enhances endothelial network formation. These findings indicate the role of HSMFs in maintaining cytokine balance and consequently promoting angiogenesis in the skeletal muscle cell sheets. This approach can be used to improve transplantation efficiency of engineered tissues.

6.
Cancer Cell Int ; 17: 85, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28959141

RESUMO

BACKGROUND: Transforming growth factor-ß (TGF-ß) plays a paradoxical role in cancer: it suppresses proliferation at early stages but promotes metastasis at late stages. This cytokine is upregulated in cholangiocarcinoma and is implicated in cholangiocarcinoma invasion and metastasis. Here we investigated the roles of non-Smad pathway (ERK1/2) and Smad in TGF-ß tumor promoting and suppressing activities in intrahepatic cholangiocarcinoma (ICC) cells. METHODS: TGF-ß1 effects on proliferation, invasion and migration of ICC cells, KKU-M213 and/or HuCCA-1, were investigated using MTT, colony formation, in vitro Transwell and wound healing assays. Levels of mRNAs and proteins/phospho-proteins were measured by quantitative (q)RT-PCR and Western blotting respectively. E-cadherin localization was examined by immunofluorescence and secreted MMP-9 activity was assayed by gelatin zymography. The role of ERK1/2 signaling was evaluated by treating cells with TGF-ß1 in combination with MEK1/2 inhibitor U0126, and that of Smad2/3 and Slug using siSmad2/3- and siSlug-transfected cells. RESULTS: h-TGF-ß1 enhanced KKU-M213 cell invasion and migration and induced epithelial-mesenchymal transition as shown by an increase in vimentin, Slug and secreted MMP-9 levels and by a change in E-cadherin localization from membrane to cytosol, while retaining the cytokine's ability to attenuate cell proliferation. h-TGF-ß1 stimulated Smad2/3 and ERK1/2 phosphorylation, and the MEK1/2 inhibitor U0126 attenuated TGF-ß1-induced KKU-M213 cell invasion and MMP-9 production but moderately enhanced the cytokine growth inhibitory activity. The latter effect was more noticeable in HuCCA-1 cells, which resisted TGF-ß-anti-proliferative activity. Smad2/3 knock-down suppressed TGF-ß1 ability to induce ERK1/2 phosphorylation, Slug expression and cell invasion, whereas Slug knock-down suppressed cell invasion and vimentin expression but marginally affected ERK1/2 activation and MMP-9 secretion. These results indicate that TGF-ß1 activated ERK1/2 through Smad2/3 but not Slug pathway, and that ERK1/2 enhanced TGF-ß1 tumor promoting but repressed its tumor suppressing functions. CONCLUSIONS: Inhibiting ERK1/2 activation attenuates TGF-ß1 tumor promoting effect (invasion) but retains its tumor suppressing role, thereby highlighting the importance of ERK1/2 in resolving the TGF-ß paradox switch.

7.
World J Gastroenterol ; 18(3): 244-50, 2012 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-22294827

RESUMO

AIM: To investigate the role of urokinase plasminogen activator (uPA) in cholangiocarcinoma (CCA) invasion and its correlation with clinicopathological parameters. METHODS: uPA expression in CCA tissue was determined by immunohistochemistry. The level of uPA from two CCA cell lines (HuCCA-1 and KKU-M213) and a non-cancer immortalized cholangiocyte cell line (H69) was monitored by plasminogen-gelatin zymography and western blotting, whereas that of plasminogen activator inhibitor type 1 (PAI-1) protein and uPA receptor (uPAR) mRNA was monitored by western blotting and quantitative real-time reverse transcriptase polymerase chain reaction, respectively. Two independent methods were employed to suppress uPA function: a synthetic uPA inhibitor (B428) and silencing of uPA gene expression using siRNA. In vitro invasion of the uPA-disrupted cells was assessed by Matrigel-coated Transwell assay. RESULTS: The immunohistochemical study showed that 75.3% (131/174) of CCA tissues expressed uPA. High uPA expression was correlated with lymphatic invasion and metastasis of CCA patients. Plasminogen-gelatin zymography of the conditioned media and cell-surface eluates showed that both CCA cell lines, but not H69, expressed both secreted and membrane-bound forms of uPA. Although the two CCA cell lines, HuCCA-1 and KKU-M213, expressed a relatively high level of uPA and uPAR, the latter exhibited a much lower degree of in vitro invasiveness, correlating with a high expression of PAI-1 in the latter, but not in the former. Suppressing uPA function with a specific uPA inhibitor, B428, or with siRNA against uPA reduced in vitro invasiveness of KKU-M213 cells, demonstrating the requirement for uPA in the invasiveness of CCA cells. Therefore, our in vivo and in vitro studies suggest that uPA is an important requirement for the invasion process of CCA. CONCLUSION: uPA expression correlates with lymphatic invasion and metastasis in vivo and is required for CCA cell invasion in vitro, suggesting its potential as a therapeutic target.


Assuntos
Colangiocarcinoma/metabolismo , Colangiocarcinoma/patologia , Metástase Linfática/patologia , Invasividade Neoplásica/patologia , Ativador de Plasminogênio Tipo Uroquinase/metabolismo , Adulto , Idoso , Linhagem Celular Tumoral , Feminino , Humanos , Estimativa de Kaplan-Meier , Masculino , Análise em Microsséries , Pessoa de Meia-Idade , Inibidor 1 de Ativador de Plasminogênio/genética , Inibidor 1 de Ativador de Plasminogênio/metabolismo , RNA Interferente Pequeno/metabolismo , Receptores de Ativador de Plasminogênio Tipo Uroquinase/genética , Receptores de Ativador de Plasminogênio Tipo Uroquinase/metabolismo , Estudos Retrospectivos , Ativador de Plasminogênio Tipo Uroquinase/antagonistas & inibidores , Ativador de Plasminogênio Tipo Uroquinase/genética
8.
J Mol Diagn ; 12(3): 354-8, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20190015

RESUMO

alpha-Thalassemia is an inherited hemoglobin disorder that results from defective synthesis of alpha-globin protein. Couples who both carry the alpha-thalassemia-1 gene are at risk of having a fetus with Hb Bart's hydrops fetalis. Rapid and accurate screening for individuals carrying the alpha-thalassemia-1 gene is the most effective strategy to prevent and control this severe form of thalassemia. In this study, a new and accurate method for alpha-thalassemia diagnosis was developed by genotyping alpha-thalassemia-1, the Southeast Asian type (--(SEA)) and Thai type (--(THAI)) deletions, using multiplex PCR followed by a melting curve analysis. Primers were designed to specifically amplify two deletion fragments, the --(SEA) and --(THAI) deletions and two normal fragments, psizeta- and alpha2-globin gene. The primers were capable of distinguishing alpha-thalassemia 1 heterozygotes from alpha-thalassemia 2 homozygotes, which are unable to be diagnosed by standard hematological data and hemoglobin typing. The melting temperatures of the --(THAI), --(SEA), psizeta-globin, and alpha2-globin gene fragments were 79.9 +/- 0.2, 89.4 +/- 0.5, 92.8 +/- 0.2, and 85.0 +/- 0.2 degrees C, respectively. Melting curve analysis was performed in 130 subjects in parallel with conventional gap-PCR analysis, and results showed 100% concordance. This method eliminates the post-PCR electrophoresis process, which is laborious, and allows high throughput screening suitable for large population screening for prevention and control of thalassemia.


Assuntos
Desnaturação de Ácido Nucleico , Talassemia alfa/diagnóstico , Talassemia alfa/genética , Genótipo , Hemoglobinas/genética , Humanos , Reação em Cadeia da Polimerase
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...