Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
iScience ; 27(4): 109535, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38617562

RESUMO

Electrochromic (EC) glazing has garnered significant attention recently as a crucial solution for enhancing energy efficiency in future construction and automotive sectors. EC glazing could significantly reduce the energy usage of buildings compared to traditional blinds and glazing. Despite their commercial availability, several challenges remain, including issues with switching time, leakage of electrolytes, production costs, etc. Consequently, these areas demand more attention and further studies. Among inorganic-based EC materials, tungsten oxide nanostructures are essential due to its outstanding advantages such as low voltage demand, high coloration coefficient, large optical modulation range, and stability. This review will summarize the principal design and mechanism of EC device fabrication. It will highlight the current gaps in understanding the mechanism of EC theory, discuss the progress in material development for EC glazing, including various solutions for improving EC materials, and finally, introduce the latest advancements in photo-EC devices that integrate photovoltaic and EC technologies.

2.
RSC Adv ; 13(50): 35457-35467, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38115985

RESUMO

Electrochromic (EC) glass has the potential to significantly improve energy efficiency in buildings by controlling the amount of light and heat that the building exchanges with its exterior. However, the development of EC materials is still hindered by key challenges such as slow switching time, low coloration efficiency, short cycling lifetime, and material degradation. Metal doping is a promising technique to enhance the performance of metal oxide-based EC materials, where adding a small amount of metal into the host material can lead to lattice distortion, a variation of oxygen vacancies, and a shorter ion transfer path during the insertion and de-insertion process. In this study, we investigated the effects of niobium, gadolinium, and erbium doping on tungsten oxide using a single-step solvothermal technique. Our results demonstrate that both insertion and de-insertion current density of a doped sample can be significantly enhanced by metal elements, with an improvement of about 5, 4 and 3.5 times for niobium, gadolinium and erbium doped tungsten oxide, respectively compared to a pure tungsten oxide sample. Moreover, the colouration efficiency increased by 16, 9 and 24% when doping with niobium, gadolinium and erbium, respectively. These findings suggest that metal doping is a promising technique for improving the performance of EC materials and can pave the way for the development of more efficient EC glass for building applications.

3.
Nanomaterials (Basel) ; 13(5)2023 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-36903705

RESUMO

The slow kinetics of the oxygen evolution reaction (OER) is one of the significant reasons limiting the development of electrochemical hydrolysis. Doping metallic elements and building layered structures have been considered effective strategies for improving the electrocatalytic performance of the materials. Herein, we report flower-like nanosheet arrays of Mn-doped-NiMoO4/NF (where NF is nickel foam) on nickel foam by a two-step hydrothermal method and a one-step calcination method. The doping manganese metal ion not only modulated the morphologies of the nickel nanosheet but also altered the electronic structure of the nickel center, which could be the result of superior electrocatalytic performance. The Mn-doped-NiMoO4/NF electrocatalysts obtained at the optimum reaction time and the optimum Mn doping showed excellent OER activity, requiring overpotentials of 236 mV and 309 mV to drive 10 mA cm-2 (62 mV lower than the pure NiMoO4/NF) and 50 mA cm-2 current densities, respectively. Furthermore, the high catalytic activity was maintained after continuous operation at a current density of 10 mA cm-2 of 76 h in 1 M KOH. This work provides a new method to construct a high-efficiency, low-cost, stable transition metal electrocatalyst for OER electrocatalysts by using a heteroatom doping strategy.

4.
RSC Adv ; 13(13): 8564-8576, 2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36926299

RESUMO

Photocatalysis provides an attractive approach to convert CO2 into valuable fuels, which relies on a well-designed photocatalyst with good selectivity and high CO2 reduction ability. Herein, a series of P25/Bi2WO6 nanocomposites were synthesized by a simple one-step in situ hydrothermal method. The formation of a heterojunction between Bi2WO6, which absorbs visible light, and P25, which absorbs ultraviolet light, expands the utilization of sunlight by the catalysts, and consequently, leads to a remarkably enhanced CO2 selective photoreduction to CO. The maximum CO yield of the P25/Bi2WO6 heterojunction under simulated solar irradiation was 15.815 µmol g-1 h-1, which was 4.04 and 2.80 times higher than that of pure P25 and Bi2WO6, respectively. Our investigations verified a Z-scheme charge migration mechanism based on various characterization techniques between P25 and Bi2WO6. Furthermore, in situ DRIFTS uncovered the related reaction intermediates and CO2 photoreduction mechanism. Our work sheds light on investigating the efficacious construction of Bi2WO6-based hybrids for light-driven photocatalysis.

5.
J Colloid Interface Sci ; 630(Pt A): 140-149, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36240688

RESUMO

The development of low-cost electrocatalysts with high oxygen evolution reaction (OER) and oxygen reduction reaction (ORR) performance is crucial for devices used to convert and store hydrogen energy. Research on OER and ORR catalysts has attracted a lot of attention. The limited single-functional catalysts can be expanded as bi-functional catalysts to meet the extra requirement of preparing high-performance catalysts. In this study, we prepared Co-ZIF/CNF in which carbon nanofibers uniformly encapsulated Co- nanoparticles by electrospinning and simple pyrolysis. Co-ZIF/CNF contains both CoOx and Co-Ny active sites, showing bifunctional activity for OER and ORR. The optimized catalyst Co-ZIF1.5/10CNF2 has a low OER overpotential of 390 mV, an onset potential of 0.93 V and a half-wave potential of 0.85 V of ORR, exhibiting an outstanding OER and ORR catalytic performance. The catalyst retained 87.53 % of its current after 12 h, showing great stability. This paper provides a new strategy for designing and preparing OER and ORR bifunctional catalysts.

6.
RSC Adv ; 12(49): 31900-31910, 2022 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-36380948

RESUMO

Biochar reinforced advanced nanocomposites are of interest to a wide circle of researchers. Herein, we describe a novel MOF-derived reinforced cow dung biochar composite, which was prepared by a one-step hydrothermal method to form the MOF MIL-125(Ti) onto a nitrogen and sulfur co-doped bio-carbon (NSCDBC). The UV-vis diffuse reflectance spectrum of NSCDBC/MIL-125(Ti) exhibits an extension of light absorption in the visible region (360-800 nm), indicating its higher visible light capture capacity relative to pure MIL-125(Ti). The photocatalytic activity results show that all the NSCDBC/MIL-125(Ti) composite samples, namely NSCM-5, NSCM-10, NSCM-20 and NSCM-30 display good performance in the removal of tetracycline hydrochloride compared to pure MIL-125(Ti). Among them, NSCM-20 exhibits the highest catalytic activity with a removal rate of 94.62%, which is attributed to the excellent adsorption ability of NSCDBC and the ability to inhibit the complexation of photogenerated electron-hole pairs. Photoluminescence verifies that the loading of biochar successfully enhances the separation of photogenerated electron-hole pairs. Subsequently, the active species in the photocatalytic process are identified by using electron spin resonance spin-trap techniques and free radical trapping experiments. Finally, the possible reaction mechanism for the photocatalytic process is revealed. These results confirm that NSCDBC/MIL-125(Ti) is a potentially low-cost, green photocatalyst for water quality improvement.

7.
RSC Adv ; 12(23): 14902-14911, 2022 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-35702230

RESUMO

In this paper, a novel cow dung based activated carbon (CDAC) was successfully modified by W18O49 nanowires as a photocatalyst using KOH activation and a hydrothermal method. The activity of photocatalytic degradation of methylene blue (MB) under full-spectrum light illumination shows great improvement, and the degradation rate of MB could reach 98% after 240 min (67% for W18O49), with a final degradation rate of 98%. The porous structure with specific surface area of CDAC (∼479 m2 g-1) increases the adsorption of W18O49 reactants and also raises the concentration of reactants in the photocatalytic region. The high electrical conductivity and good electron storage capacity of CDAC allow the electrons excited in the conduction band (CB) of W18O49 to migrate smoothly into CDAC, which are the keys to enhancing the photocatalytic activity. Moreover, the photocatalytic mechanism was proposed. The results show that the CDAC/W18O49 nanowire composite can be used as an efficient photocatalyst for removal of MB dye from wastewater and indicate remarkable future potential in dye wastewater treatment technologies.

8.
Nanomaterials (Basel) ; 12(9)2022 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-35564175

RESUMO

The death of hair cells and damage of natural tip links is one of the main causes of hearing-loss disability, and the development of an advanced artificial hearing aid holds the key to assisting those suffering from hearing loss. This study demonstrates the potential of using electrospun polyvinylidene fluoride (PVDF) fibers to serve as the artificial tip links, for long-term hearing-aid-device development based on their piezoelectric properties. We have shown that the electrospun PVDF-fiber web, consisting of fibers ranging from 30-220 nm in diameter with high ß-phase content, possesses the high piezoresponse of 170 mV. Analyses based on combined characterization methods including SEM, TEM, XRD, FTIR, Raman, DSC, XPS, PFM and piezoelectricity have confirmed that an optimized value of 15 wt.% PVDF could act as an effective candidate for a tip-link connector in a vibration-frequency prototype. Based on this easily reproducible electrospinning technique and the multifunctionalities of the resulting PVDF fibers, this fundamental study may shed light on the bio-inspired design of artificial, self-powered, high performance, hair-cell-like sensors in cochlea to tackle the hearing loss issue.

9.
ACS Omega ; 7(4): 3230-3239, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-35128236

RESUMO

Production of snake foam based on p-nitro aniline (PNA) was considered fun in old-school chemistry laboratories. Herein, we report the fabrication of a new carbon nanomaterial from PNA-based foam. The resulting material, resembling graphene and consisting of nitrogen heteroatoms, is N-doped graphenelike nanostructures, and their morphology, structure, and stability are comprehensively examined using combined techniques including C-13 NMR spectroscopy, X-ray photoelectron spectroscopy (XPS), and X-ray diffraction (XRD). An optimized route was also established for their large-scale production. Further experimental validation of them as a nanofiller in polymer [SEBS (20 wt %) and paraffin wax (80 wt %)]-based nanocomposites was carried out, and we found that the thermomechanical properties of the nanocomposites were synchronously improved, which was attributed to the enshrouding effect of the nanofiller to the polymer chains. Owing to their good thermomechanical property and low-cost feature, these new nanomaterials can be further explored as a promising candidate for applications in energy storage, catalysis, and CO2 capture.

10.
Nanomaterials (Basel) ; 11(3)2021 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-33800384

RESUMO

Molybdenum disulfide (MoS2) has been universally demonstrated to be an effective electrocatalytic catalyst for hydrogen evolution reaction (HER). However, the low conductivity, few active sites and poor stability of MoS2-based electrocatalysts hinder its hydrogen evolution performance in a wide pH range. The introduction of other metal phases and carbon materials can create rich interfaces and defects to enhance the activity and stability of the catalyst. Herein, a new defect-rich heterogeneous ternary nanocomposite consisted of MoS2, NiS and reduced graphene oxide (rGO) are synthesized using ultrathin αNi(OH)2 nanowires as the nickel source. The MoS2/rGO/NiS-5 of optimal formulation in 0.5 M H2SO4, 1.0 M KOH and 1.0 M PBS only requires 152, 169 and 209 mV of overpotential to achieve a current density of 10 mA cm-2 (denoted as η10), respectively. The excellent HER performance of the MoS2/rGO/NiS-5 electrocatalyst can be ascribed to the synergistic effect of abundant heterogeneous interfaces in MoS2/rGO/NiS, expanded interlayer spacings, and the addition of high conductivity graphene oxide. The method reported here can provide a new idea for catalyst with Ni-Mo heterojunction, pH-universal and inexpensive hydrogen evolution reaction electrocatalyst.

11.
Polymers (Basel) ; 13(5)2021 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-33673597

RESUMO

An efficient, green and reusable catalyst for organic pollutant wastewater treatment has been a subject of intense research in recent decades due to the limitation of current technologies. Cellulose based aerogel composites are considered to be an especially promising candidate for next-generation catalytic material. This project was conducted in order to evaluate the behavior and ability of green and reusable sugarcane bagasse aerogels to remove P-Nitrophesnol from waste-water aqueous. Co-Zeolitic imidazolate framework@ sugarcane bagasse aerogels composite catalysts were successfully prepared via simple in situ synthesis. The structure of hybrid aerogels and their efficient catalyst in peroxymonosulfate (PMS) activation for the degradation of p-nitrophenol (PNP) was investigated. As a result, the hybrid aerogels/PMS system removed 98.5% of PNP (10mg/L) within 60~70 min, while the traditional water treatment technology could not achieve this. In addition, through a free radical capture experiment and electron paramagnetic resonance (EPR), the degradation mechanism of PNP was investigated. Further research found that the hybrid aerogels can effectively activate PMS to produce sulfate (SO4•-) and hydroxyl (OH• ). Both of them contributed to the degradation of PNP, and SO4•- plays a crucial role in the degradative process. The most important feature of hybrid aerogels can be easily separated from the solution. The obtained results showed that the outer coating structure of cellulose can stabilize Co-ZIF and reduce the dissolution of cobalt ions under complex reaction conditions. Moreover, the prepared hybrid aerogels exhibit excellent reusability and are environmentally friendly with efficient catalytic efficiency. This work provides a new strategy for bagasse applications and material reusability.

12.
RSC Adv ; 11(59): 37246-37253, 2021 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-35496439

RESUMO

Size-controlled Fe3O4 nanoparticles doped with rare earth (RE) ions (La3+, Ce3+, and Dy3+) varying from 15 nm to 30 nm were successful synthesized by a hydrothermal method for potential applications in the fields of biomedicine, environmental protection and magnetic memory devices. They possessed good dispersibility, adjustable particle size and nearly spherical shape. The particle grain size was uniformly distributed and showed a low degree of agglomeration in comparison with undoped Fe3O4 nanoparticles. The FTIR results showed that the RE elements partially replaced Fe2+, occupied the octahedral position, and enhanced the vibration of the Fe-O bond. The XPS study further revealed that the valence states of La, Ce, and Dy are both positive trivalent. The XPS Fe 2p valence band spectra observed a shift in the peak position toward higher binding energy after RE doping, confirming the existence of RE ions in the octahedral position. This paper explains the mechanism of rare earth doping with Fe3O4, and clarifies the influence of the doping of different RE ions on its magnetic properties. The detailed analysis of RE-doped ferrite materials can open a new perspective in designing biomedical and spintronics materials with tailored properties by choosing suitable cation substitution.

13.
Polymers (Basel) ; 12(10)2020 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-33066184

RESUMO

The industrial advancement of high-performance technologies directly depends on the thermo-mechanical properties of materials. Here we give an account of a facile approach for the bulk production of a polyethylene terephthalate (PET)/polypropylene (PP)-based nanocomposite blend with Inorganic Fullerene Tungsten Sulfide (IF-WS2) nanofiller using a single extruder. Nanofiller IF-WS2 was produced by the rotary chemical vapor deposition (RCVD) method. Subsequently, IF-WS2 nanoparticles were dispersed in PET and PP in different loadings to access impact and their dispersion behavior in polymer matrices. As-prepared blend nanocomposites were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), thermogravimetric analysis (TGA), dynamic differential scanning (DSC), dynamic mechanical analysis (DMA), and X-ray diffraction (XRD). In this work, the tensile strength of the PP/PET matrix with 1% IF-WS2 increased by 31.8%, and the thermal stability of the sample PP/PET matrix with 2% increased by 18 °C. There was an extraordinary decrease in weight loss at elevated temperature for the nanocomposites in TGA analysis, which confirms the role of IF-WS2 on thermal stability versus plain nanocomposites. In addition, this method can also be used for the large-scale production of such materials used in high-temperature environments.

14.
R Soc Open Sci ; 5(4): 171932, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29765650

RESUMO

This study uses two in situ techniques to investigate the geometry and phase change behaviour of bundled ultrathin W18O49 nanowires and WO3 nanoparticles. The in situ X-ray diffraction (XRD) results have shown that the phase transition of WO3 nanoparticles occurs in sequence from monoclinic (room temperature) → orthorhombic (350°C) → tetragonal (800°C), akin to bulk WO3; however, W18O49 nanowires remain stable as the monoclinic phase up to 500°C, after which a complete oxidation to WO3 and transformation to the orthorhombic ß-phase at 550°C is observed. The in situ Raman spectroscopy investigations have revealed the Raman peak downshifts as the temperature increases, and have identified the 187.6 cm-1 as the fingerprint band for the phase transition from γ- to ß-phase of the WO3 nanoparticle. Furthermore, WO3 nanoparticles exhibit the γ- to ß-phase conversion at 275°C, which is about 75°C lower than the relaxation temperature of 350°C for the monoclinic γ-W18O49 nanowires. These new fundamental understandings on the phase transition behaviour offer important guidance for the design and development of tungsten oxide-based nanodevices by defining their allowed operating conditions.

15.
Sci Rep ; 7(1): 11829, 2017 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-28928477

RESUMO

A versatile Rotary Chemical Vapour Deposition (RCVD) technique for the in-situ synthesis of large scale carbon-coated non-magnetic metal oxide nanoparticles (NPs) is presented, and a controllable coating thickness varying between 1-5 nm has been achieved. The technique has significantly up-scaled the traditional chemical vapour deposition (CVD) production for NPs from mg level to 10 s of grams per batch, with the potential for continuous manufacturing. The resulting smooth and uniform C-coatings sheathing the inner core metal oxide NPs are made of well-crystallised graphitic layers, as confirmed by electron microscopy imaging, electron dispersive spectrum elemental line scan, X-ray powder diffractions and Raman spectroscopy. Using nylon 12 as an example matrix, we further demonstrate that the inclusion of C-coated composite NPs into the matrix improves the thermal conductivity, from 0.205 W∙m-1∙K-1 for neat nylon 12 to 0.305 W∙m-1∙K-1 for a 4 wt% C-coated ZnO composite, in addition to a 27% improvement in tensile strength at 2 wt% addition.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...