Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemosphere ; 263: 128081, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33297080

RESUMO

Distribution and elimination of petroleum products can be predicted in aerobic wastewater treatment plants (WWTPs) using models such as multimedia fate model SimpleTreat. An advantage of the SimpleTreat model is that it only requires a few basic properties of a chemical in wastewater to calculate partitioning, biodegradation and ultimately emissions to air, surface water and produced sludge. The SimpleTreat model structure reflects a WWTP scheme. However, refinery WWTPs typically incorporate more advanced treatment processes such as dissolved air flotation (DAF), a process that clarifies wastewaters by the removal of suspended matter such as oil or solids. The objective of this work was to develop a WWTP removal model that includes DAF treatment. To understand how including a DAF in the model affects the predicted concentrations of petroleum constituents in effluent, we replaced the primary sedimentation module in SimpleTreat with a module simulating DAF. Subsequently, we compared results from the WWTP-DAF model with results obtained with the original SimpleTreat model for a library of over 1500 representative hydrocarbon constituents. The increased air-water exchange in a WWTP-DAF unit resulted in higher predicted removal of volatile constituents. Predicted removal with DAF was on average 17% larger than removal with primary sedimentation. We compared modelled results with measured removal data from the literature, which supported that this model refinement continues to improve the technical basis of assessment of petroleum products.


Assuntos
Petróleo , Esgotos , Biodegradação Ambiental , Hidrocarbonetos , Eliminação de Resíduos Líquidos , Águas Residuárias
2.
Sci Total Environ ; 720: 137579, 2020 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-32135281

RESUMO

Persistent organic pollutants (POPs) are of great concern for decades due to their persistence, bioaccumulation and long-range transport potential. Multimedia fate models are useful scientific and decision-support tools for predicting the chemical fate in the environment. The SimpleBox multimedia fate model (v4.0) was used in this study to estimate the impact of POP emissions from the European and North American mainland on POP contamination in the Arctic. The purpose of the study was to evaluate the performance of SimpleBox by comparing estimations to measurements. Model performance for the air compartment was reasonable as estimated concentrations were generally within a factor of five of measured concentrations. SimpleBox suggested higher POP concentrations in Arctic oceans than in temperate oceans, contrary to the few measured data. Discrepancies between estimations and measurements may be attributed to the variability in emission estimates and degradation rates of POPs, representativeness of monitoring data, and a missing snow and ice environmental compartment in SimpleBox. Emission rates and degradation rate constants were the most influential input parameters in SimpleBox based on sensitivity analysis. Suggestions for improvements of SimpleBox refining POP risk assessment are provided.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...