Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Breast Cancer Res ; 17: 26, 2015 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-25848915

RESUMO

INTRODUCTION: The emergence of hormone therapy resistance, despite continued expression of the estrogen receptor (ER), is a major challenge to curing breast cancer. Recent clinical studies suggest that epigenetic modulation by histone deacetylase (HDAC) inhibitors reverses hormone therapy resistance. However, little is known about epigenetic modulation of the ER during acquired hormone resistance. Our recent phase II study demonstrated that HDAC inhibitors re-sensitize hormone therapy-resistant tumors to the anti-estrogen tamoxifen. In this study, we sought to understand the mechanism behind the efficacy of this combination. METHODS: We generated cell lines resistant to tamoxifen, named TAMRM and TAMRT, by continuous exposure of ER-positive MCF7 and T47D cells, respectively to 4-hydroxy tamoxifen for over 12 months. HDAC inhibition, along with pharmacological and genetic manipulation of key survival pathways, including ER and Bcl-2, were used to characterize these resistant models. RESULTS: The TAMRM cells displayed decreased sensitivity to tamoxifen, fulvestrant and estrogen deprivation. Consistent with previous models, ER expression was retained and the gene harbored no mutations. Compared to parental MCF7 cells, ER expression in TAMRM was elevated, while progesterone receptor (PGR) was lost. Sensitivity of ER to ligands was greatly reduced and classic ER response genes were suppressed. This model conveyed tamoxifen resistance through transcriptional upregulation of Bcl-2 and c-Myc, and downregulation of the cell cycle checkpoint protein p21, manifesting in accelerated growth and reduced cell death. Similar to TAMRM cells, the TAMRT cell line exhibited substantially decreased tamoxifen sensitivity, increased ER and Bcl-2 expression and significantly reduced PGR expression. Treatment with HDAC inhibitors reversed the altered transcriptional events and reestablished the sensitivity of the ER to tamoxifen resulting in substantial Bcl-2 downregulation, growth arrest and apoptosis. Selective inhibition of Bcl-2 mirrored these effects in presence of an HDAC inhibitor. CONCLUSIONS: Our model implicates elevated ER and Bcl-2 as key drivers of anti-estrogen resistance, which can be reversed by epigenetic modulation through HDAC inhibition.


Assuntos
Apoptose/efeitos dos fármacos , Apoptose/genética , Neoplasias da Mama/genética , Resistencia a Medicamentos Antineoplásicos/genética , Expressão Gênica , Inibidores de Histona Desacetilases/farmacologia , Proteínas Proto-Oncogênicas c-bcl-2/genética , Tamoxifeno/análogos & derivados , Animais , Antineoplásicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Modelos Animais de Doenças , Estradiol/análogos & derivados , Estradiol/farmacologia , Feminino , Fulvestranto , Perfilação da Expressão Gênica , Histona Desacetilases/metabolismo , Humanos , Ligantes , Ligação Proteica , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Receptores de Estrogênio/metabolismo , Tamoxifeno/farmacologia , Transcrição Gênica , Transcriptoma , Ensaios Antitumorais Modelo de Xenoenxerto
2.
Mol Cancer Ther ; 12(10): 2078-87, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23939379

RESUMO

Ataxia-telangiectasia mutated (ATM) is a major regulator of the DNA damage response. ATM promotes the activation of BRCA1, CHK2, and p53 leading to the induction of response genes such as CDKN1A (p21), GADD45A, and RRM2B that promote cell-cycle arrest and DNA repair. The upregulation of these response genes may contribute to resistance of cancer cells to genotoxic therapies. Here, we show that histone deacetylases (HDAC) play a major role in mitigating the response of the ATM pathway to DNA damage. HDAC inhibition decreased ATM activation and expression, and attenuated the activation of p53 in vitro and in vivo. Select depletion of HDAC1 and HDAC2 was sufficient to modulate ATM activation, reduce GADD45A and RRM2B induction, and increase sensitivity to DNA strand breaks. The regulation of ATM by HDAC enzymes therefore suggests a vital role for HDAC1 and HDAC2 in the DNA damage response, and the potential use of the ATM pathway as a pharmacodynamic marker for combination therapies involving HDAC inhibitors.


Assuntos
Proteínas Mutadas de Ataxia Telangiectasia/genética , Dano ao DNA/genética , Histona Desacetilase 1/genética , Histona Desacetilase 2/genética , Proteínas Mutadas de Ataxia Telangiectasia/biossíntese , Proteína BRCA1/biossíntese , Quinase do Ponto de Checagem 2/biossíntese , Regulação Neoplásica da Expressão Gênica , Histona Desacetilase 1/antagonistas & inibidores , Histona Desacetilase 2/antagonistas & inibidores , Humanos , Neoplasias/genética , Neoplasias/patologia , Transdução de Sinais , Proteína Supressora de Tumor p53/biossíntese
3.
PLoS One ; 8(7): e68973, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23874830

RESUMO

Hormonal therapy resistance remains a considerable barrier in the treatment of breast cancer. Activation of the Akt-PI3K-mTOR pathway plays an important role in hormonal therapy resistance. Our recent preclinical and clinical studies showed that the addition of a histone deacetylase inhibitor re-sensitized hormonal therapy resistant breast cancer to tamoxifen. As histone deacetylases are key regulators of Akt, we evaluated the effect of combined treatment with the histone deacetylase inhibitor PCI-24781 and tamoxifen on Akt in breast cancer cells. We demonstrate that while both histone deacetylase and estrogen receptor inhibition down regulate AKT mRNA and protein, their concerted effort results in down regulation of AKT activity with induction of cell death. Histone deacetylase inhibition exerts its effect on AKT mRNA through an estrogen receptor-dependent mechanism, primarily down regulating the most abundant isoform AKT1. Although siRNA depletion of AKT modestly induces cell death, when combined with an anti-estrogen, cytotoxicity is significantly enhanced. Thus, histone deacetylase regulation of AKT mRNA is a key mediator of this therapeutic combination and may represent a novel biomarker for predicting response to this regimen.


Assuntos
Neoplasias da Mama/metabolismo , Inibidores de Histona Desacetilases/farmacologia , Histona Desacetilases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores de Estrogênio/metabolismo , Moduladores Seletivos de Receptor Estrogênico/farmacologia , Apoptose/efeitos dos fármacos , Benzofuranos/farmacologia , Neoplasias da Mama/genética , Linhagem Celular Tumoral , Retículo Endoplasmático/metabolismo , Ativação Enzimática/efeitos dos fármacos , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Ácidos Hidroxâmicos/farmacologia , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , RNA Mensageiro/genética , Receptores de Estrogênio/antagonistas & inibidores , Tamoxifeno/farmacologia
4.
Future Oncol ; 7(2): 263-83, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21345145

RESUMO

Histone deacetylases (HDACs) regulate the acetylation of a variety of histone and nonhistone proteins, controlling the transcription and regulation of genes involved in cell cycle control, proliferation, survival, DNA repair and differentiation. Unsurprisingly, HDAC expression is frequently altered in hematologic and solid tumor malignancies. Two HDAC inhibitors (vorinostat and romidepsin) have been approved by the US FDA for the treatment of cutaneous T-cell lymphoma. As single agents, treatment with HDAC inhibitors has demonstrated limited clinical benefit for patients with solid tumors, prompting the investigation of novel treatment combinations with other cancer therapeutics. In this article, the rationales and clinical progress of several combinations with HDAC inhibitors are presented, including DNA-damaging chemotherapeutic agents, radiotherapy, hormonal therapies, DNA methyltransferase inhibitors and various small-molecule inhibitors. The future application of HDAC inhibitors as a treatment for cancer is discussed, examining current hurdles to overcome before realizing the potential of this new approach.


Assuntos
Antineoplásicos/uso terapêutico , Inibidores de Histona Desacetilases/uso terapêutico , Neoplasias/tratamento farmacológico , Acetilação/efeitos dos fármacos , Antineoplásicos/farmacologia , Cromatina/efeitos dos fármacos , Reparo do DNA/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/genética , Inibidores de Histona Desacetilases/farmacologia , Histona Desacetilases/metabolismo , Humanos , Microtúbulos/efeitos dos fármacos , Terapia de Alvo Molecular
5.
Anal Biochem ; 383(2): 226-35, 2008 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-18786502

RESUMO

We describe the synthesis of peptide nucleic acid (PNA)-titanium dioxide (TiO(2)) nanoconjugates and several novel methods developed to investigate the DNA hybridization behaviors of these constructs. PNAs are synthetic DNA analogs resistant to degradation by cellular enzymes that hybridize to single-stranded DNA (ssDNA) with higher affinity than DNA oligonucleotides, invade double-stranded DNA (dsDNA), and form different PNA/DNA complexes. Previously, we developed a DNA-TiO(2) nanoconjugate capable of hybridizing to target DNA intracellularly in a sequence-specific manner with the ability to cleave DNA when excited by electromagnetic radiation but susceptible to degradation that may lower its intracellular targeting efficiency and retention time. PNA-TiO(2) nanoconjugates described in the current article hybridize to target ssDNA, oligonucleotide dsDNA, and supercoiled plasmid DNA under physiological-like ionic and temperature conditions, enabling rapid, inexpensive, sequence-specific concentration of nucleic acids in vitro. When modified by the addition of imaging agents or peptides, hybridization capabilities of PNA-TiO(2) nanoconjugates are enhanced, providing essential benefits for numerous in vitro and in vivo applications. The series of experiments shown here could not be done with either TiO(2)-DNA nanoconjugates or PNAs alone, and the novel methods developed will benefit studies of numerous other nanoconjugate systems.


Assuntos
Nanopartículas/química , Hibridização de Ácido Nucleico , Ácidos Nucleicos Peptídicos/química , Titânio/química , Absorção , Sequência de Bases , Nanopartículas/análise , Ácidos Nucleicos Peptídicos/análise , Ácidos Nucleicos Peptídicos/genética , Peptídeos/metabolismo , Plasmídeos/genética , Propriedades de Superfície , Temperatura , Titânio/análise
6.
Nanoscale Res Lett ; 2(9): 430-41, 2007 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-21794189

RESUMO

In the following review we discuss several types of nanoparticles (such as TiO2, quantum dots, and gold nanoparticles) and their impact on the ability to image biological components in fixed cells. The review also discusses factors influencing nanoparticle imaging and uptake in live cells in vitro. Due to their unique size-dependent properties nanoparticles offer numerous advantages over traditional dyes and proteins. For example, the photostability, narrow emission peak, and ability to rationally modify both the size and surface chemistry of Quantum Dots allow for simultaneous analyses of multiple targets within the same cell. On the other hand, the surface characteristics of nanometer sized TiO2allow efficient conjugation to nucleic acids which enables their retention in specific subcellular compartments. We discuss cellular uptake mechanisms for the internalization of nanoparticles and studies showing the influence of nanoparticle size and charge and the cell type targeted on nanoparticle uptake. The predominant nanoparticle uptake mechanisms include clathrin-dependent mechanisms, macropinocytosis, and phagocytosis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...