Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Infect Dis Model ; 6: 1144-1158, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34568643

RESUMO

As college campuses reopened in fall 2020, we saw a large-scale experiment unfold on the efficacy of various strategies to contain the SARS-CoV-2 virus. Traditional individual surveillance testing via nasal swabs and/or saliva is among the measures that colleges are pursuing to reduce the spread of the virus on campus. Additionally, some colleges are testing wastewater on their campuses for signs of infection, which can provide an early warning signal for campuses to locate COVID-positive individuals. However, a representation of wastewater surveillance has not yet been incorporated into epidemiological models for college campuses, nor has the efficacy of wastewater screening been evaluated relative to traditional individual surveillance testing, within the structure of these models. Here, we implement a new model component for wastewater surveillance within an established epidemiological model for college campuses. We use a hypothetical residential university to evaluate the efficacy of wastewater surveillance for maintaining low infection rates. We find that wastewater sampling with a 1-day lag to initiate individual screening tests, plus completing the subsequent tests within a 4-day period can keep overall infections within 5% of the infection rates seen with traditional individual surveillance testing. Our results also indicate that wastewater surveillance can effectively reduce the number of false positive cases by identifying subpopulations for surveillance testing where infectious individuals are more likely to be found. Through a Monte Carlo risk analysis, we find that surveillance testing that relies solely on wastewater sampling can be fragile against scenarios with high viral reproductive numbers and high rates of infection of campus community members by outside sources. These results point to the practical importance of additional surveillance measures to limit the spread of the virus on campus and the necessity of a proactive response to the initial signs of outbreak.

2.
J Synchrotron Radiat ; 28(Pt 2): 490-498, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33650561

RESUMO

An experimental setup to measure X-ray photon correlation spectroscopy during continuous sample translation is presented and its effectiveness as a means to avoid sample damage in dynamics studies of protein diffusion is evaluated. X-ray damage from focused coherent synchrotron radiation remains below tolerable levels as long as the sample is translated through the beam sufficiently quickly. Here it is shown that it is possible to separate sample dynamics from the effects associated with the transit of the sample through the beam. By varying the sample translation rate, the damage threshold level, Dthresh = 1.8 kGy, for when beam damage begins to modify the dynamics under the conditions used, is also determined. Signal-to-noise ratios, Rsn ≥ 20, are obtained down to the shortest delay times of 20 µs. The applicability of this method of data collection to the next generation of multi-bend achromat synchrotron sources is discussed and it is shown that sub-microsecond dynamics should be obtainable on protein samples.


Assuntos
Proteínas , Síncrotrons , Raios X
3.
Biophys J ; 120(7): 1161-1169, 2021 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-33453268

RESUMO

Living cells organize their internal space into dynamic condensates through liquid-liquid phase separation of multivalent proteins in association with cellular nucleic acids. Here, we study how variations in nucleic acid (NA)-to-protein stoichiometry modulate the condensed phase organization and fluid dynamics in a model system of multicomponent heterotypic condensates. Employing a multiparametric approach comprised of video particle tracking microscopy and optical tweezer-induced droplet fusion, we show that the interfacial tension, but not viscosity, of protein-NA condensates is controlled by the NA/protein ratio across the two-phase regime. In parallel, we utilize fluorescence correlation spectroscopy to quantify protein and NA diffusion in the condensed phase. Fluorescence correlation spectroscopy measurements reveal that the diffusion of the component protein and NA within the condensate core is governed by the viscosity, and hence, also remains insensitive to the changes in NA-to-protein stoichiometry. Collectively, our results provide insights into the regulation of multicomponent heterotypic liquid condensates, reflecting how the bulk mixture composition affects their core versus surface organization and dynamical properties.


Assuntos
Ácidos Nucleicos , Difusão , Proteínas , Tensão Superficial , Viscosidade
4.
Phys Rev E ; 97(2-1): 020601, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29548072

RESUMO

The dynamics of concentrated suspensions of the eye-lens protein alpha crystallin have been measured using x-ray photon correlation spectroscopy. Measurements were made at wave vectors corresponding to the first peak in the hard-sphere structure factor and volume fractions close to the critical volume fraction for the glass transition. Langevin dynamics simulations were also performed in parallel to the experiments. The intermediate scattering function f(q,τ) could be fit using a stretched exponential decay for both experiments and numerical simulations. The measured relaxation times show good agreement with simulations for polydisperse hard-sphere colloids.

5.
J Chem Phys ; 146(5): 055101, 2017 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-28178791

RESUMO

We model light-scattering cross sections of concentrated aqueous mixtures of the bovine eye lens proteins γB- and α-crystallin by adapting a statistical-thermodynamic model of mixtures of spheres with short-range attractions. The model reproduces measured static light scattering cross sections, or Rayleigh ratios, of γB-α mixtures from dilute concentrations where light scattering intensity depends on molecular weights and virial coefficients, to realistically high concentration protein mixtures like those of the lens. The model relates γB-γB and γB-α attraction strengths and the γB-α size ratio to the free energy curvatures that set light scattering efficiency in tandem with protein refractive index increments. The model includes (i) hard-sphere α-α interactions, which create short-range order and transparency at high protein concentrations, (ii) short-range attractive plus hard-core γ-γ interactions, which produce intense light scattering and liquid-liquid phase separation in aqueous γ-crystallin solutions, and (iii) short-range attractive plus hard-core γ-α interactions, which strongly influence highly non-additive light scattering and phase separation in concentrated γ-α mixtures. The model reveals a new lens transparency mechanism, that prominent equilibrium composition fluctuations can be perpendicular to the refractive index gradient. The model reproduces the concave-up dependence of the Rayleigh ratio on α/γ composition at high concentrations, its concave-down nature at intermediate concentrations, non-monotonic dependence of light scattering on γ-α attraction strength, and more intricate, temperature-dependent features. We analytically compute the mixed virial series for light scattering efficiency through third order for the sticky-sphere mixture, and find that the full model represents the available light scattering data at concentrations several times those where the second and third mixed virial contributions fail. The model indicates that increased γ-γ attraction can raise γ-α mixture light scattering far more than it does for solutions of γ-crystallin alone, and can produce marked turbidity tens of degrees celsius above liquid-liquid separation.


Assuntos
Cristalino/química , Termodinâmica , alfa-Cristalinas/análise , gama-Cristalinas/análise , Animais , Bovinos , Modelos Biológicos , Modelos Estatísticos , Espalhamento de Radiação
6.
Phys Rev E ; 96(3-1): 032415, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29346981

RESUMO

We model screened, site-specific charge regulation of the eye lens protein bovine gammaB-crystallin (γB) and study the probability distributions of its proton occupancy patterns. Using a simplified dielectric model, we solve the linearized Poisson-Boltzmann equation to calculate a 54×54 work-of-charging matrix, each entry being the modeled voltage at a given titratable site, due to an elementary charge at another site. The matrix quantifies interactions within patches of sites, including γB charge pairs. We model intrinsic pK values that would occur hypothetically in the absence of other charges, with use of experimental data on the dependence of pK values on aqueous solution conditions, the dielectric model, and literature values. We use Monte Carlo simulations to calculate a model grand-canonical partition function that incorporates both the work-of-charging and the intrinsic pK values for isolated γB molecules and we calculate the probabilities of leading proton occupancy configurations, for 4

Assuntos
Modelos Moleculares , gama-Cristalinas/química , Animais , Bovinos , Simulação por Computador , Concentração de Íons de Hidrogênio , Método de Monte Carlo , Concentração Osmolar , Probabilidade , Prótons , Eletricidade Estática , gama-Cristalinas/metabolismo
7.
J Chem Phys ; 145(24): 244201, 2016 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-28049341

RESUMO

In this work we study the potential for utilizing the scattering of polarized neutrons from nuclei whose spin has been modulated using nuclear magnetic resonance (NMR). From first principles, we present an in-depth development of the differential scattering cross sections that would arise in such measurements from a hypothetical target system containing nuclei with non-zero spins. In particular, we investigate the modulation of the polarized scattering cross sections following the application of radio frequency pulses that impart initial transverse rotations to selected sets of spin-1/2 nuclei. The long-term aim is to provide a foundational treatment of the scattering cross section associated with enhancing scattering signals from selected nuclei using NMR techniques, thus employing minimal chemical or isotopic alterations, so as to advance the knowledge of macromolecular or liquid structure.

8.
Artigo em Inglês | MEDLINE | ID: mdl-26764648

RESUMO

We report a charge-patterning phase transition on two-dimensional square lattices of titratable sites, here regarded as protonation sites, placed in a low-dielectric medium just below the planar interface between this medium and a salt solution. We calculate the work-of-charging matrix of the lattice with use of a linear Debye-Hückel model, as input to a grand-canonical partition function for the distribution of occupancy patterns. For a large range of parameter values, this model exhibits an approximate inverse cubic power-law decrease of the voltage produced by an individual charge, as a function of its in-lattice separation from neighboring titratable sites. Thus, the charge coupling voltage biases the local probabilities of proton binding as a function of the occupancy of sites for many neighbors beyond the nearest ones. We find that even in the presence of these longer-range interactions, the site couplings give rise to a phase transition in which the site occupancies exhibit an alternating, checkerboard pattern that is an analog of antiferromagnetic ordering. The overall strength W of this canonical charge coupling voltage, per unit charge, is a function of the Debye length, the charge depth, the Bjerrum length, and the dielectric coefficients of the medium and the solvent. The alternating occupancy transition occurs above a curve of thermodynamic critical points in the (pH-pK,W) plane, the curve representing a charge-regulation analog of variation of the Néel temperature of an Ising antiferromagnet as a function of an applied, uniform magnetic field. The analog of a uniform magnetic field in the antiferromagnet problem is a combination of pH-pK and W, and 1/W is the analog of the temperature in the antiferromagnet problem. We use Monte Carlo simulations to study the occupancy patterns of the titratable sites, including interactions out to the 37th nearest-neighbor category (a distance of √74 lattice constants), first validating simulations through comparison with exact and approximate results for the nearest-neighbor case. We then use the simulations to map the charge-patterning phase boundary in the (pH-pK,W) plane. The physical parameters that determine W provide a framework for identifying and designing real surfaces that could exhibit charge-patterning phase transitions.


Assuntos
Eletrólitos/química , Campos Magnéticos , Fenômenos Magnéticos , Modelos Moleculares , Transição de Fase , Impedância Elétrica , Conformação Molecular , Prótons , Soluções , Eletricidade Estática , Propriedades de Superfície
9.
Proc Natl Acad Sci U S A ; 111(47): 16748-53, 2014 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-25385638

RESUMO

We study the equilibrium liquid structure and dynamics of dilute and concentrated bovine eye lens α-crystallin solutions, using small-angle X-ray scattering, static and dynamic light scattering, viscometry, molecular dynamics simulations, and mode-coupling theory. We find that a polydisperse Percus-Yevick hard-sphere liquid-structure model accurately reproduces both static light scattering data and small-angle X-ray scattering liquid structure data from α-crystallin solutions over an extended range of protein concentrations up to 290 mg/mL or 49% vol fraction and up to ca. 330 mg/mL for static light scattering. The measured dynamic light scattering and viscosity properties are also consistent with those of hard-sphere colloids and show power laws characteristic of an approach toward a glass transition at α-crystallin volume fractions near 58%. Dynamic light scattering at a volume fraction beyond the glass transition indicates formation of an arrested state. We further perform event-driven molecular dynamics simulations of polydisperse hard-sphere systems and use mode-coupling theory to compare the measured dynamic power laws with those of hard-sphere models. The static and dynamic data, simulations, and analysis show that aqueous eye lens α-crystallin solutions exhibit a glass transition at high concentrations that is similar to those found in hard-sphere colloidal systems. The α-crystallin glass transition could have implications for the molecular basis of presbyopia and the kinetics of molecular change during cataractogenesis.


Assuntos
Cristalino/metabolismo , alfa-Cristalinas/metabolismo , Animais , Bovinos , Espalhamento de Radiação , Viscosidade , alfa-Cristalinas/química
10.
J Chem Phys ; 139(12): 124114, 2013 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-24089757

RESUMO

We extend methods of solution of a light scattering partial differential equation for the free energy of mixing to apply to connected, isotropic ternary liquid composition domains that do not touch all three binary axes. To do so we mathematically analyze the problem of inferring needed Dirichlet boundary data, and solving for the free energy, with use of hypothetical static light scattering measurements that correspond to dielectric composition gradient vectors that have distinct directions. The physical idea behind the technique is that contrasting absorption properties of mixture components can result in such distinctly directed dielectric composition gradient vectors, due to their differing wavelength dependences of dielectric response. At suitably chosen wavelengths, contrasting light scattering efficiency patterns in the ternary composition triangle can then correspond to the same underlying free energy, and enlarge the scope of available information about the free energy, as shown here. We show how to use distinctly directed dielectric gradients to measure the free energy on both straight lines and curves within the ternary composition triangle, so as to provide needed Dirichlet conditions for light scattering partial differential equation solution. With use of Monte Carlo simulations of noisy light scattering data, we provide estimates of the overall system measurement time and sample spacing needed to determine the free energy to a desired degree of accuracy, for various angles between the assumed dielectric gradient vectors, and indicate how the measurement time depends on instrumental throughput parameters. The present analysis methods provide a way to use static light scattering to measure, directly, mixing free energies of many systems that contain such restricted liquid domains, including aqueous solutions of biological macromolecules, micellar mixtures and microemulsions, and many small molecule systems that are important in separation technology.


Assuntos
Luz , Simulação de Dinâmica Molecular , Método de Monte Carlo , Espalhamento de Radiação
11.
J Chem Phys ; 137(3): 034201, 2012 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-22830693

RESUMO

We mathematically design sets of static light scattering experiments to provide for model-independent measurements of ternary liquid mixing free energies to a desired level of accuracy. A parabolic partial differential equation (PDE), linearized from the full nonlinear PDE [D. Ross, G. Thurston, and C. Lutzer, J. Chem. Phys. 129, 064106 (2008)], describes how data noise affects the free energies to be inferred. The linearized PDE creates a net of spacelike characteristic curves and orthogonal, timelike curves in the composition triangle, and this net governs diffusion of information coming from light scattering measurements to the free energy. Free energy perturbations induced by a light scattering perturbation diffuse along the characteristic curves and towards their concave sides, with a diffusivity that is proportional to the local characteristic curvature radius. Consequently, static light scattering can determine mixing free energies in regions with convex characteristic curve boundaries, given suitable boundary data. The dielectric coefficient is a Lyapunov function for the dynamical system whose trajectories are PDE characteristics. Information diffusion is heterogeneous and system-dependent in the composition triangle, since the characteristics depend on molecular interactions and are tangent to liquid-liquid phase separation coexistence loci at critical points. We find scaling relations that link free energy accuracy, total measurement time, the number of samples, and the interpolation method, and identify the key quantitative tradeoffs between devoting time to measuring more samples, or fewer samples more accurately. For each total measurement time there are optimal sample numbers beyond which more will not improve free energy accuracy. We estimate the degree to which many-point interpolation and optimized measurement concentrations can improve accuracy and save time. For a modest light scattering setup, a sample calculation shows that less than two minutes of measurement time is, in principle, sufficient to determine the dimensionless mixing free energy of a non-associating ternary mixture to within an integrated error norm of 0.003. These findings establish a quantitative framework for designing light scattering experiments to determine the Gibbs free energy of ternary liquid mixtures.


Assuntos
Luz , Espalhamento de Radiação , Soluções/química , Termodinâmica , Algoritmos , Modelos Químicos
12.
J Chem Phys ; 137(3): 034202, 2012 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-22830694

RESUMO

We provide a mathematical and computational analysis of light scattering measurement of mixing free energies of quaternary isotropic liquids. In previous work, we analyzed mathematical and experimental design considerations for the ternary mixture case [D. Ross, G. Thurston, and C. Lutzer, J. Chem. Phys. 129, 064106 (2008); C. Wahle, D. Ross, and G. Thurston, J. Chem. Phys. 137, 034201 (2012)]. Here, we review and introduce dimension-free general formulations of the fully nonlinear partial differential equation (PDE) and its linearization, a basis for applying the method to composition spaces of any dimension, in principle. With numerical analysis of the PDE as applied to the light scattering implied by a test free energy and dielectric gradient combination, we show that values of the Rayleigh ratio within the quaternary composition tetrahedron can be used to correctly reconstruct the composition dependence of the free energy. We then extend the analysis to the case of a finite number of data points, measured with noise. In this context the linearized PDE describes the relevant diffusion of information from light scattering noise to the free energy. The fully nonlinear PDE creates a special set of curves in the composition tetrahedron, collections of which form characteristics of the nonlinear and linear PDEs, and we show that the information diffusion has a time-like direction along the positive normals to these curves. With use of Monte Carlo simulations of light scattering experiments, we find that for a modest laboratory light scattering setup, about 100-200 samples and 100 s of measurement time are enough to be able to measure the mixing free energy over the entire quaternary composition tetrahedron, to within an L(2) error norm of 10(-3). The present method can help quantify thermodynamics of quaternary isotropic liquid mixtures.


Assuntos
Luz , Espalhamento de Radiação , Soluções/química , Termodinâmica , Algoritmos , Simulação por Computador , Modelos Químicos , Método de Monte Carlo , Solubilidade
13.
J Chem Phys ; 137(3): 034203, 2012 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-22830695

RESUMO

We investigate the possibility of using light scattering data in the single-phase regions of a ternary liquid mixture phase diagram to infer ternary mixture coexistence curves, and to infer tie lines joining the compositions of isotropic liquid phases in thermodynamic equilibrium. Previous analyses of a nonlinear light scattering partial differential equation (LSPDE) show that it provides for reconstruction of ternary [D. Ross, G. Thurston, and C. Lutzer, J. Chem. Phys. 129, 064106 (2008); C. Wahle, D. Ross, and G. Thurston, J. Chem. Phys. 137, 034201 (2012)] and quaternary [C. Wahle, D. Ross, and G. Thurston, J. Chem. Phys. 137, 034202 (2012)] mixing free energies from light scattering data, and that if the coexistence curves are already known, it can also yield ternary tie lines and triangles [D. Ross, G. Thurston, and C. Lutzer, J. Chem. Phys. 129, 064106 (2008)]. Here, we show that the LSPDE can be used more generally, to infer phase boundaries and tie lines from light scattering data in the single-phase region, without prior knowledge of the coexistence curve, if the single-phase region is connected. The method extends the fact that the reciprocal light scattering intensity approaches zero at the thermodynamic spinodal. Expressing the free energy as the sum of ideal and excess parts leads to a natural family of Padé approximants for the reciprocal Rayleigh ratio. To test the method, we evaluate the single-phase reciprocal Rayleigh ratio resulting from the mean-field, regular solution model on a fine grid. We then use a low-order approximant to extrapolate the reciprocal Rayleigh ratio into metastable and unstable regions. In the metastable zone, the extrapolation estimates light scattering prior to nucleation and growth of a new phase. In the unstable zone, the extrapolation produces a negative function that in the present context is a computational convenience. The original and extrapolated reciprocal light scattering are jointly used as input to solving the LSPDE to deduce the mixing free energy and its convex hull. When projected onto the composition triangle, the boundary of the convexified part of the free energy is the phase boundary, and lines on the convexified region along which the second directional derivative is zero are the tie lines. We find that the tie lines and phase boundaries so deduced agree well with their exact values. This work is a step toward developing methods for inferring phase boundaries from real light scattering intensities measured with noise, from mixtures having compositions on a coarser grid.


Assuntos
Algoritmos , Luz , Transição de Fase , Espalhamento de Radiação , Termodinâmica , Modelos Químicos , Soluções/química
14.
Proc Natl Acad Sci U S A ; 108(2): 574-9, 2011 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-21173272

RESUMO

Several point mutations in human γD-crystallin (HGD) are now known to be associated with cataract. So far, the in vitro studies of individual mutants of HGD alone have been sufficient in providing plausible molecular mechanisms for the associated cataract in vivo. Nearly all the mutant proteins in solution showed compromised solubility and enhanced light scattering due to altered homologous γ-γ crystallin interactions. In sharp contrast, here we present an intriguing case of a human nuclear cataract-associated mutant of HGD--namely Glu107 to Ala (E107A), which is nearly identical to the wild type in structure, stability, and solubility properties, with one exception: Its pI is higher by nearly one pH unit. This increase dramatically alters its interaction with α-crystallin. There is a striking difference in the liquid-liquid phase separation behavior of E107A-α-crystallin mixtures compared to HGD-α-crystallin mixtures, and the light-scattering intensities are significantly higher for the former. The data show that the two coexisting phases in the E107A-α mixtures differ much more in protein density than those that occur in HGD-α mixtures, as the proportion of α-crystallin approaches that in the lens nucleus. Thus in HGD-α mixtures, the demixing of phases occurs primarily by protein type while in E107A-α mixtures it is increasingly governed by protein density. Analysis of these results suggests that the cataract due to the E107A mutation could result from the instability caused by the altered attractive interactions between dissimilar proteins--i.e., heterologous γ-α crystallin interactions--primarily due to the change in surface electrostatic potential in the mutant protein.


Assuntos
Mutação , alfa-Cristalinas/química , gama-Cristalinas/química , gama-Cristalinas/genética , Naftalenossulfonato de Anilina/química , Animais , Bovinos , Dicroísmo Circular , Temperatura Alta , Humanos , Luz , Oxazinas/química , Ligação Proteica , Estrutura Secundária de Proteína , Proteínas Recombinantes/química , Espalhamento de Radiação , Espectrometria de Fluorescência/métodos , Triptofano/química , alfa-Cristalinas/genética
15.
Phys Rev E Stat Nonlin Soft Matter Phys ; 82(3 Pt 1): 031402, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21230072

RESUMO

We study the electrostatic contribution to the effective potential between two spherical low-dielectric particles that carry proton-titratable sites within a linearized setting. To evaluate the needed work of charging for each possible proton occupancy configuration, together with its crucial dependence on sphere separation, we numerically solve a coarse-grained linear Debye-Hückel model that incorporates nonuniform dielectric and ionic solution properties at a series of intersphere separations and for chosen titratable charge locations on each sphere. We combine the resulting work-of-charging matrix with site-specific chemical potentials of proton binding to construct the Boltzmann-weighted probabilities of each possible occupancy pattern of the titratable sites as functions of intersphere separation. With the use of these probabilities we find that a nonmonotonic average electrostatic potential can result that is repulsive at larger sphere separations but attractive at close separations. The nonmonotonic potential corresponds to particular choices of site-specific unoccupied charge values and their corresponding proton affinities, and its occurrence is dependent on pH in relation to the pKa values of the titratable groups. For the chosen titratable groups, we identify the particular change from repulsive to attractive proton occupancy patterns with decreasing intersphere separation that gives rise to the modeled nonmonotonic dependence and derive more general conditions under which such a nonmonotonic dependence can occur. Within the present model we find that stationary points of the charge-regulated average electrostatic potential, considered as a function of intersphere separation, occur when a normalized Boltzmann-averaged intersphere charge number product equals its covariance with an average free energy of charging divided by k(B)T. We derive more general conditions for the location and nature of critical points in the electrostatic intersphere potential, which are not dependent on the validity of the present linear model. Analysis of the present simple prototype model can be a helpful step toward developing a framework for predicting when (i) patterned charge-regulated occupancy patterns, (ii) orientation-dependent attractions due to relatively fixed heterogeneous charging patterns, and (iii) screened net protein charge could separately dominate the electrostatic portion of the interactions between model biological macromolecules and other nanoparticles.


Assuntos
Modelos Químicos , Eletricidade Estática , Impedância Elétrica , Prótons , Sais/química , Propriedades de Superfície
16.
J Chem Phys ; 129(6): 064106, 2008 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-18715050

RESUMO

In this paper we present a method for determining the free energies of ternary mixtures from light scattering data. We use an approximation that is appropriate for liquid mixtures, which we formulate as a second-order nonlinear partial differential equation. This partial differential equation (PDE) relates the Hessian of the intensive free energy to the efficiency of light scattering in the forward direction. This basic equation applies in regions of the phase diagram in which the mixtures are thermodynamically stable. In regions in which the mixtures are unstable or metastable, the appropriate PDE is the nonlinear equation for the convex hull. We formulate this equation along with continuity conditions for the transition between the two equations at cloud point loci. We show how to discretize this problem to obtain a finite-difference approximation to it, and we present an iterative method for solving the discretized problem. We present the results of calculations that were done with a computer program that implements our method. These calculations show that our method is capable of reconstructing test free energy functions from simulated light scattering data. If the cloud point loci are known, the method also finds the tie lines and tie triangles that describe thermodynamic equilibrium between two or among three liquid phases. A robust method for solving this PDE problem, such as the one presented here, can be a basis for optical, noninvasive means of characterizing the thermodynamics of multicomponent mixtures.


Assuntos
Misturas Complexas/química , Luz , Termodinâmica
18.
J Chem Phys ; 124(13): 134909, 2006 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-16613479

RESUMO

We have used light scattering, turbidimetry, and thermodynamic analysis to study the phase diagram of concentrated aqueous mixtures of the bovine lens proteins, gammaB crystallin, and alpha crystallin. We find that dilute alpha crystallin raises the phase separation temperature of concentrated gammaB crystallin, while more concentrated alpha crystallin suppresses phase separation. Very concentrated alpha/gammaB mixtures can reversibly cloud above 37 degrees C, even though gammaB alone phase separates only below temperatures near 0 degrees C, and alpha does not phase separate. At the scattering vector magnitude used, high-concentration alpha/gammaB mixtures scatter less light than the weighted average of their component alpha and gammaB solutions, while low-concentration alpha/gammaB mixtures scatter more than such a weighted average. We use a mean-field thermodynamic analysis of such ternary mixtures to show that the observed light scattering and phase boundaries of alpha and gammaB crystallin mixtures give evidence for prominent local fluctuations of relative protein composition. In the single phase, these fluctuations scatter comparatively little light, but are associated with enhanced thermodynamic instability. By applying this analysis to the experimental tie lines we estimate the magnitude of the saddlelike component of the free energy near the aqueous-gammaB critical point.


Assuntos
alfa-Cristalinas/química , gama-Cristalinas/química , Animais , Bovinos , Luz , Transição de Fase , Espalhamento de Radiação , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...