Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microbiol Spectr ; 12(4): e0424723, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38415658

RESUMO

Cutaneous candidiasis, caused by Candida albicans, is a severe and frustrating condition, and finding effective treatments can be challenging. Therefore, the development of farnesol-loaded nanoparticles is an exciting breakthrough. Ethosomes are a novel transdermal drug delivery carrier that incorporates a certain concentration (10-45%) of alcohols into lipid vesicles, resulting in improved permeability and encapsulation rates compared to conventional liposomes. Farnesol is a quorum-sensing molecule involved in morphogenesis regulation in C. albicans, and these ethosomes offer a promising new approach to treating this common fungal infection. This study develops the formulation of farnesol-loaded ethosomes (farnesol-ethosomes) and assesses applications in treating cutaneous candidiasis induced by C. albicans in vitro and in vivo. Farnesol-ethosomes were successfully developed by ethanol injection method. Therapeutic properties of farnesol-ethosomes, such as particle size, zeta potential, and morphology, were well characterized. According to the results, farnesol-ethosomes demonstrated an increased inhibition effect on cells' growth and biofilm formation in C. albicans. In Animal infection models, treating farnesol-ethosomes by transdermal administration effectively relieved symptoms caused by cutaneous candidiasis and reduced fungal burdens in quantity. We also observed that ethosomes significantly enhanced drug delivery efficacy in vitro and in vivo. These results indicate that farnesol-ethosomes can provide future promising roles in curing cutaneous candidiasis. IMPORTANCE: Cutaneous candidiasis attributed to Candida infection is a prevalent condition that impacts individuals of all age groups. As a type of microbial community, biofilms confer benefits to host infections and mitigate the clinical effects of antifungal treatments. In C. albicans, the yeast-to-hypha transition and biofilm formation are effectively suppressed by farnesol through its modulation of multiple signaling pathway. However, the characteristics of farnesol such as hydrophobicity, volatility, degradability, and instability in various conditions can impose limitations on its effectiveness. Nanotechnology holds the potential to enhance the efficiency and utilization of this molecule. Treatment of farnesol-ethosomes by transdermal administration demonstrated a very remarkable therapeutic effect against C. albicans in infection model of cutaneous candidiasis in mice. Many patients suffering fungal skin infection will benefit from this study.


Assuntos
Candida albicans , Candidíase , Humanos , Animais , Camundongos , Farneseno Álcool/farmacologia , Farneseno Álcool/metabolismo , Farneseno Álcool/uso terapêutico , Administração Cutânea , Candidíase/tratamento farmacológico , Candidíase/microbiologia , Antifúngicos/farmacologia , Biofilmes
2.
Mol Pharm ; 20(8): 4210-4218, 2023 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-37463505

RESUMO

Photothermal therapy, combined with chemotherapy, holds promising prospects for the therapeutic outcome of malignant tumors. However, the synergistic therapeutic effect suffers from low coloading capacity and inefficient synchronous tumor-targeting delivery of chemodrug and photothermal photosensitizers. Herein, we designed a versatile carrier-free nanoplatform to seek improvement for chemo-photothermal therapy. An NIR photosensitizer IR-808 was used for noninvasive cancer imaging, diagnosis, and imaging-guided photothermal therapy. A reduction-sensitive paclitaxel prodrug (PTX-SS-PEG2k) was rationally synthesized by covalently linking paclitaxel with polyethylene glycol 2000 via a disulfide bond. Then, the carrier-free nanoassemblies were constructed with an inner core of IR-808 and an amphiphilic paclitaxel prodrug shell. PTX-SS-PEG2k served as a stabilizer and chemodrug and could facilitate the self-assembly of IR-808 nanoparticles with high coloading efficiency and reduction-sensitive drug release. The versatile nanoplatform exhibited multiple advantages, including high drug payload, reduction-sensitive drug release, tumor-targeting drug delivery, and potent synergistic antitumor effect. We provide a versatile theranostic nanoplatform, which improves the effectiveness of synergetic chemo-photothermal therapy and reduces the off-target toxicity.


Assuntos
Hipertermia Induzida , Nanopartículas , Pró-Fármacos , Pró-Fármacos/química , Terapia Fototérmica , Fototerapia/métodos , Linhagem Celular Tumoral , Paclitaxel , Nanopartículas/química , Liberação Controlada de Fármacos , Doxorrubicina/química , Hipertermia Induzida/métodos
3.
Chirality ; 35(4): 247-255, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36759185

RESUMO

Flurbiprofen axetil (FA) is a prodrug of flurbiprofen (FP), and it is hydrolyzed to the active FP by carboxylesterase in plasma after intravenous injection. The pharmacological action of FP is closely related to its chirality, and S-FP shows better analgesic effects than R-FP. Therefore, it is of great significance to compare the in vivo pharmacokinetic behaviors of R-FP and S-FP. In this study, we designed a sensitive high performance liquid chromatography-tandem mass spectrometry method and used CHIRALPAK-IG3 column for chiral separation to quantify the concentrations of R-FP and S-FP in rat plasma. The results show that this method can accurately and effectively analyze the contents of R-FP and S-FP in plasma. In addition, the systemic exposure was approximately 3.09-folds for the S-FP compared with the R-FP following intravenous administration of the FA to rats at a single dose of 4.5 mg/kg. More importantly, the clearance rate of S-FP is significantly smaller than that of R-FP. Therefore, the development of S-FA injectable emulsion for clinical treatment of postoperative pain is very necessary.


Assuntos
Flurbiprofeno , Ratos , Animais , Flurbiprofeno/farmacocinética , Injeções Intravenosas , Estereoisomerismo , Anti-Inflamatórios não Esteroides/farmacocinética
4.
Nanoscale ; 15(4): 1937-1946, 2023 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-36625215

RESUMO

pH-Responsive nanotherapeutics were recently developed for the treatment of ulcerative colitis (UC). However, they target the entire colon rather than the UC site, which leads to insufficient accumulation in inflamed colon lesions and causes side effects. Core-shell nanoparticles exhibit unique advantages in improving the precision of targeted delivery. In this study, Eudragit® EPO and L100, two pH-sensitive materials, were coated on nano-sized curcumin to fabricate core-shell nanoparticles. The developed CNs@EPO@L100 exhibited programmed pH-responsive drug release behavior, improved in vitro anti-inflammatory ability, and enhanced accumulation at the site of inflammation in the colon. Furthermore, after oral administration, CNs@EPO@L100 significantly ameliorated the inflammatory symptoms in mice. Taken together, this study provides insights into programmed release through the rational application of pH-sensitive materials and offers strategies for a precisely targeted therapy of UC using core-shell nanoparticles.


Assuntos
Colite Ulcerativa , Nanopartículas , Camundongos , Animais , Colite Ulcerativa/tratamento farmacológico , Inflamação/tratamento farmacológico , Sistemas de Liberação de Medicamentos , Nanopartículas/uso terapêutico , Concentração de Íons de Hidrogênio
5.
J Control Release ; 353: 42-50, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36414193

RESUMO

As a promising strategy, amorphous solid dispersion has been extensively employed in improving the oral bioavailability of insoluble drugs. Despite the numerous advantages, the problems associated with supersaturation stability limit its further application. Recently, the formation and stability of the liquid-liquid phase separation drug aggregate (LLPS-DA) have been found to be vital for supersaturation maintenance. An in-depth review of LLPS-DA was required to further explore the supersaturation maintenance mechanism in vivo. Hence, this study aimed to present a short review to introduce the LLPS-DA, highlight the in vivo advantages for oral administration, and discuss the prospects to help understand the in vivo behavior of LLPS-DA.


Assuntos
Preparações Farmacêuticas , Solubilidade , Cristalização , Liberação Controlada de Fármacos , Disponibilidade Biológica
6.
Asian J Pharm Sci ; 17(5): 741-750, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36382308

RESUMO

Nanocrystals (NCs), a colloidal dispersion system formulated with stabilizers, have attracted widespread interest due to their ability to effectively improve the oral bioavailability of poorly water-soluble drugs. The stabilizer plays a key role because it can affect the physical stability and even the oral bioavailability of NCs. However, how stabilizers affect the bioavailability of NCs remains unknown. In this study, F68, F127, HPMC, and PVP were each used as a stabilizer to formulate naringenin NCs. The NCs formulated with PVP exhibited excellent release behaviors, cellular uptake, permeability, oral bioavailability, and anti-inflammatory effects. The underlying mechanism is that PVP effectively inhibits the formation of naringenin dimer, which in turn improves the physical stability of the supersaturated solution generated when NC is dissolved. This finding provides insights into the effects of stabilizers on the in vivo performances of NCs and supplies valuable knowledge for the development of poorly water-soluble drugs.

7.
Biomater Sci ; 11(1): 307-321, 2022 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-36448603

RESUMO

Fungal infections gradually lead to a high mortality rate due to difficulties in diagnosis, the limited number of antifungal drugs available, and the appearance of resistant isolates. Here, we developed a calcofluor white-cholesteryl hydrogen succinate conjugate (CFW-CHSc) as a novel nanomaterial that specifically binds to chitin chains in the cell wall. We showed that fluorescent-dye loaded CFW-CHSc-liposomes entered the cytoplasm of Candida albicans cells with increased efficacy. Voriconazole-loaded CFW-CHSc-liposomes displayed an increased antifungal activity against C. albicans yeast cells in an in vitro assay. Animal infection models and animal imaging analysis showed that fluorescent-dye loaded CFW-CHSc-liposomes maintained prolonged residence in rodent tissues. In mouse liver and kidney tissue, voriconazole-loaded CFW-CHSc-liposomes showed significantly enhanced antifungal activity when administered intravenously. Taken together, our studies confirm that CFW-CHSc increases the drug delivery efficacy of nanoparticles in vitro by interacting with chitin chains in the C. albicans cell wall. The fungi-targeting nanoparticles improve the drug delivery efficacy in vivo by enriching the nanoparticles at the site of fungal infection via the blood circulation system. Fungi-targeting nanomaterials have a promising future in the treatment of nosomycosis.


Assuntos
Antifúngicos , Candida albicans , Animais , Camundongos , Voriconazol/farmacologia , Antifúngicos/farmacologia , Lipossomos , Quitina , Succinatos , Testes de Sensibilidade Microbiana
8.
Mol Pharm ; 19(11): 3831-3845, 2022 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-36067066

RESUMO

The present study was to evaluate the potential effectiveness of low-molecular-weight chitosan-coated baicalin methoxy poly(ethylene glycol)-poly(d,l-lactic-co-glycolic acid) (mPEG-PLGA) nanoparticles (BA LCH NPs) for the treatment of cataract. mPEG-PLGA NPs were optimized by the Box-Behnken design and the central composite design based on the encapsulation efficiency and drug loading. Then, the BA LCH NPs were characterized based on morphology, particle size, and zeta potentials. The analytical data of differential scanning calorimetry, X-ray diffraction, and transmission electron microscopy depicted the drug excipient compatibility. In vitro, we evaluated cell viability, cellular uptake, potential ocular irritation, transcorneal permeability, and the precorneal retention of BA LCH NPs. In vivo, the chronic selenium cataract model was selected to assess the therapeutic effect of BA LCH NPs. The size of BA LCH NPs was within the range from 148 to 219 nm and the zeta potential was 19-25 mV. Cellular uptake results showed that the fluorescence intensity of the preparations in each group increased with time, and the fluorescence intensity of the LCH NP group was significantly higher than that of the solution group. The optimized BA LCH NPs improved precorneal residence time without causing eye irritation and also showed a sustained release of BA through the cornea for effective management of cataract. Also, fluorescence tracking on the rabbit cornea showed increased corneal retention of the LCH NPs. In addition, the results of therapeutic efficacy demonstrated that BA LCH NPs can significantly reduce the content of malondialdehyde and enhanced the activities of catalase, superoxide dismutase, and glutathione peroxidase, which was comparable to positive control and better than the BA solution group. Thus, it can be inferred that the BA LCH NPs are a promising drug delivery system for enhancing the ophthalmic administration of BA to the posterior segment of the eye and improving cataract symptoms.


Assuntos
Catarata , Quitosana , Nanopartículas , Animais , Coelhos , Quitosana/química , Portadores de Fármacos/química , Polietilenoglicóis/química , Nanopartículas/química , Ácido Láctico/química , Tamanho da Partícula , Catarata/induzido quimicamente , Catarata/tratamento farmacológico
9.
Colloids Surf B Biointerfaces ; 218: 112777, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36007315

RESUMO

Meloxicam (MLX) is considered to have significant analgesic properties. However, the analgesic effects of MLX are compromised by its poor water solubility and thus the low drug loading. The purpose of this study was to develop a high drug-loaded MLX injection by formulating it into nanocrystals (NCs) for the treatment of analgesia. The developed MLXNCs exhibited satisfactory particle sizes and remarkably in vitro dissolution behaviors. In addition, the plasma concentrations of MLXNCs were comparable with the MLX solution (formulated with 1.0% polyoxyethylene castor oil 35) in rats. The acetic acid-induced writhing tests, hot plate tests and hind paw incision experiments demonstrated that the MLXNCs had significant analgesic effects. The findings provide insights into the developed high drug-loaded MLXNCs and provide new therapeutic options for acute and chronic pain management.


Assuntos
Analgesia , Nanopartículas , Tiazinas , Acetatos , Animais , Anti-Inflamatórios não Esteroides , Meloxicam/química , Dor/tratamento farmacológico , Manejo da Dor , Ratos , Tiazinas/farmacologia , Tiazinas/uso terapêutico , Tiazóis/química , Tiazóis/farmacologia , Água
10.
Carbohydr Polym ; 291: 119552, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35698331

RESUMO

An N-acetylcysteine functionalized chitosan oligosaccharide-palmitic acid conjugate (NAC-COS-PA) with bioadhesive and permeation promoting properties was synthesized to enhance transocular drug delivery. Flurbiprofen (FB) loaded self-assembled NAC-COS-PA nanomicelles (NAC-COS-PA-FB) were prepared and the drug loading was 7.35 ± 0.32%. Human immortalized corneal epithelial (HCE-T) cell cytotoxicity and hen's egg test-chorioallantoic membrane assays confirmed that the conjugate had good biocompatibility. The transportation efficiency of coumarin-6 (C6) loaded nanomicelles in the HCE-T cell monolayer was approximately 1.97 times higher than that of free C6. Decreased intracellular Ca2+ concentration and cell membrane potential, increased cell membrane fluidity, and reversible changes in the F-actin cytoskeleton are presumed to be responsible for the enhanced drug permeation. NAC-COS-PA exhibited strong binding capacity with mucin and rabbit eyeball. In vivo pharmacokinetics indicated that the area under the curve (AUC0-6 h) and the maximum concentration (Cmax) of NAC-COS-PA-FB were approximately 1.92 and 2.44 times that of the FB solution, respectively. NAC-COS-PA-FB demonstrated the best in vivo anti-inflammatory efficacy compared to unfunctionalized nanomicelles (COS-PA-FB) and FB solution. Consequently, NAC-COS-PA appears to be a promising bioadhesive carrier for ophthalmic delivery.


Assuntos
Quitosana , Flurbiprofeno , Acetilcisteína/química , Acetilcisteína/farmacologia , Animais , Galinhas , Quitosana/química , Córnea/metabolismo , Feminino , Flurbiprofeno/farmacocinética , Oligossacarídeos/metabolismo , Oligossacarídeos/farmacologia , Ácido Palmítico , Tamanho da Partícula , Coelhos
11.
ACS Appl Mater Interfaces ; 14(26): 29563-29576, 2022 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-35730906

RESUMO

Free radicals, including reactive oxygen species (ROS), play a critical role in determining cell's fate. When the level of free radicals is increased to a fatal value, it causes cancer cells to undergo senescence or cell death. Strategies that target this mechanism offer promising therapies against cancer. However, efficient and sustainable systems that generate free radicals, especially oxygen-independent systems, remain deficient. Herein, functionalized PLGA-based nanocomposites that efficiently co-deliver magnetic nanoparticles and 2,2'-azobis[2-(2-imidazolin-2-yl) propane]-dihydrochloride (AIPH) were fabricated to achieve photothermal-induced thermodynamic therapy combined with macrophage polarization strategies; this therapy targets hypoxic tumors through the generation of an oxygen-independent free-radical cascade. These hybrid NPs can accumulate in the tumor microenvironment, and the encapsulated MNPs not only serve as contrast agents for enhanced magnetic resonance imaging but also exhibit the expected photothermal conversion and trigger the decomposition of AIPH to generate free radicals, thus causing cancer cell death. More importantly, the cell debris from apoptotic or necrotic cancer cells carries nondegraded MNPs, which can be endocytosed by recruited TAMs. MNPs can further induce TAMs to polarize to the M1 subtype to subsequently generate ROS. This study provides an alternative method for the generation of an oxygen-independent free-radical cascade for tumor co-therapy guided by magnetic resonance imaging PTT/TDT.


Assuntos
Nanopartículas , Neoplasias , Linhagem Celular Tumoral , Radicais Livres/química , Humanos , Hipóxia , Imageamento por Ressonância Magnética , Nanopartículas/química , Neoplasias/diagnóstico por imagem , Neoplasias/tratamento farmacológico , Oxigênio/metabolismo , Espécies Reativas de Oxigênio , Termodinâmica , Microambiente Tumoral
12.
Colloids Surf B Biointerfaces ; 216: 112578, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35636325

RESUMO

Oxidative stress damage caused by sun exposure damages the appearance and function of the skin, which is one of the essential inducements of skin aging and even leads to skin cancer. Oroxylin A (OA) is a flavonoid with excellent antioxidant activity and has protective effects against photoaging induced by UV irradiation. However, the strong barrier function of the skin stratum corneum prevents transdermal absorption of the drug, which limits the application of OA in dermal drug delivery. Studies have shown that nanostructured lipid carriers (NLC) can promote not only transdermal absorption of drugs but also increase drug stability and control drug release efficiency, which has broad prospects for clinical applications. In this paper, NLC loaded with OA (OA-NLC) was prepared in order to improve the skin permeability and stability of OA. In vitro studies revealed that OA-NLC had better therapeutic effects than OA solution (OA-Sol) in the cellular model of UVB radiation. OA-Sol and OA-NLC were immobilized in a hydrogel matrix to facilitate application to the dorsal skin of mice. It was found that OA-NLC-gel showed significant antioxidant and anti-apoptotic activity compared to OA-Sol-gel, which was able to protect against skin damage in mice after UV radiation. These results suggest that OA-NLC can improve the deficiencies of OA in skin delivery and show better resistance to UV-induced oxidative damage. The application of OA-NLC to skin delivery systems has good prospects and deserves further development and investigation.


Assuntos
Portadores de Fármacos , Nanoestruturas , Animais , Excipientes , Flavonoides/metabolismo , Flavonoides/farmacologia , Lipídeos , Camundongos , Estresse Oxidativo , Tamanho da Partícula , Pele/metabolismo , Raios Ultravioleta
13.
Int J Pharm ; 616: 121538, 2022 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-35124119

RESUMO

Formulating drugs into amorphous solid dispersions (ASDs) represents an attractive means to enhance the aqueous solubility of drugs. Furthermore, water-soluble polymers have proven highly advantageous for stabilizing supersaturated solutions of ASDs. However, the performance and mechanism of various polymers in stabilizing supersaturated drug solutions have not been well-studied. The aim of this study was to investigate the effects of different commercial polymers on the dissolution behaviors and supersaturation stabilization of the ASDs and to further explore the mechanism of polymer mediated supersaturation maintenance by studying the crystallization behaviors of the ASDs. In this study, nimodipine (NMD) was used as a model drug because of its poor water-solubility and fast crystallization rate in aqueous solution, and three polymers polyvinylpyrrolidone (PVP), vinylpyrrolidone-vinyl acetate copolymer (PVP VA), and polyvinyl caprolactam-polyvinyl acetate-polyethylene glycol graft co-polymer (Soluplus) was selected as the drug carriers to form the ASDs with NMD. Solid-state characterizations of the ASDs confirmed the amorphous state of the ASD systems. ASDPVP VA demonstrated superior supersaturation maintenance in dissolution experiments compared to the other two ASD systems. Among the polymers tested, PVP VA most efficiently maintained dissolution of NMD and prevented its crystallization from the supersaturated solution. The ability of PVP VA to most-effectively maintain supersaturation of the drug was manifested by inhibition of crystal nucleation rather than inhibition of crystal growth following nucleation. These results suggest that nucleation inhibition was instrumental in enabling the polymer-mediated supersaturation maintenance, at least with NMD.


Assuntos
Nimodipina , Polímeros , Cristalização , Humanos , Polímeros/química , Povidona/química , Solubilidade
14.
Colloids Surf B Biointerfaces ; 209(Pt 1): 112180, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34775252

RESUMO

Drugs that are topically applied on the eyes have low bioavailability, which has always been an important problem. In this study, maleimide functionalized, voriconazole (VCZ) loaded mixed micelles (Mal-VCZ-MM) were designed. Pluronic F127 and phospholipid were used as materials, and maleimide was used as an adhesive. The prepared Mal-VCZ-MM was nearly spherical with a particle size of 84.45 ± 1.39 nm and a zeta potential of - 20.3 ± 0.29 mV. The encapsulation efficiency of Mal-VCZ-MM was 95.33 ± 0.06%, and it had high stability with a critical micelle concentration value of 1.28 × 10-4 mg/mL. CCK-8 assay showed that its cytotoxicity was lower than that of free VCZ solution (VCZ-Sol). Both quantitative and qualitative analyses of the HCE-T cellular uptake showed that the cellular internalization of Mal-C6-MM was significantly stronger than that of C6-MM. The endocytosis pathway was macropinocytosis-mediated, cavernous-mediated, and energy-dependent. In vitro results against Candida albicans showed that the diameters of the antifungal inhibition zones of VCZ-Sol, VCZ-MM, and Mal-VCZ-MM were 15.5 ± 0.50 mm, 24.0 ± 0.71 mm, and 31.5 ± 1.12 mm, respectively. The antifungal effect of Mal-VCZ-MM was significantly higher than that of VCZ-Sol and VCZ-MM (P < 0.001). This study shows that Mal-VCZ-MM is a highly effective hydrophobic ophthalmic drug-delivery carrier that can improve the therapeutic effect of the drug.


Assuntos
Micelas , Poloxâmero , Candida albicans , Maleimidas , Fosfolipídeos , Voriconazol/farmacologia
15.
Acta Biomater ; 138: 193-207, 2022 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-34757228

RESUMO

Topical eye drops still face challenges of low-drug treatment effects and frequent dosing in ophthalmic applications due to the low preocular retention rate and low transcorneal permeability. Thus, we designed and synthesized a phenylboronic acid conjugated chitosan oligosaccharide-vitamin E copolymer (PBA-CS-VE) for use in mucoadhesive voriconazole (VRC)-loaded nanomicelles for fungal keratitis. In vitro mucin binding and ex vivo eyeball adhesion tests show that the copolymer has strong mucoadhesion. The transportation of coumarin-6 (C6) across a monolayer of HCE-T cells and 3D cell spheroids confirm the strong corneal penetration ability of PBA-CS-VE. The mechanism of promoting corneal penetration was studied in terms of intracellular calcium-ion concentration, cell membrane potential, cell membrane fluidity, and the tight junctions of cells. The pharmacokinetics in the aqueous humor were examined to evaluate the ability of nanomicelles in promoting corneal penetration and prolonging ocular retention. VRC-loaded PBA-CS-VE nanomicelles (PBA-CS-VE-VRC) yielded a very favorable therapeutic effect on a rabbit model of fungal keratitis in vivo as compared to the free drug. Overall, the results indicate that PBA-CS-VE nanomicelles are a mucoadhesive candidate with enhanced transcorneal permeability and prolonged preocular retention for efficient delivery of topical ocular drugs. STATEMENT OF SIGNIFICANCE: Although eye drops are widely used in ocular drug delivery, the disadvantages such as short retention time and weak corneal penetrating ability still seriously affect the therapeutic effect of the drug. Therefore, the mucoadhesive carrier seems to be an interesting strategy for ocular drug delivery. Herein, a novel phenylboronic acid conjugated chitosan oligosaccharide-vitamin E copolymer was designed and constructed as mucoadhesive nanomicelles loaded with voriconazole for fungal keratitis. These nanomicelles were able to improve the in vitro mucin binding and to prolong the residence time of the drug on the surface of the eyeball. Moreover, the nanomicelles exhibited an enhanced drug permeability in cell monolayer models and 3D cell culture models. This work provides a promising ocular drug delivery system.


Assuntos
Quitosana , Animais , Ácidos Borônicos , Técnicas de Cultura de Células em Três Dimensões , Córnea , Sistemas de Liberação de Medicamentos , Oligossacarídeos , Coelhos , Vitamina E , Voriconazol
16.
Int J Pharm ; 607: 120971, 2021 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-34363915

RESUMO

The co-amorphous (CAM) technology has attracted extensive attention in recent years because it can improve the solubility and provide a formulation strategy for fixed dose combination for poorly water-soluble drugs. Atorvastatin (ATR) is a poorly water-soluble drug and it has strong anti-hyperlipidemia activity, and it is usually used in combination with lisinopril (LNP), an anti-hypertension drug. The aim of this study is to test the feasibility to develop ATR/LNP co-amorphous formulation using a cryo-milling method. The solid-state behaviors of the CAM systems were characterized by polarizing light microscopy, differential scanning calorimetry and powder X-ray diffraction. The molecular interaction between ATR and LNP was confirmed by the analysis of glass transition temperature and Fourier transform infrared spectroscopy. Compared with crystalline ATR and neat amorphous ATR, the CAM systems showed significantly increased in vitro dissolution and intrinsic dissolution rate of ATR, because LNP enhanced the supersaturation maintenance of ATR and inhibited its solution-mediated recrystallization to a certain extent.


Assuntos
Lisinopril , Atorvastatina , Varredura Diferencial de Calorimetria , Composição de Medicamentos , Estabilidade de Medicamentos , Solubilidade , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X
17.
J Nanobiotechnology ; 19(1): 232, 2021 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-34362397

RESUMO

BACKGROUND: Biofilm formation is one of the main reasons for persistent bacterial infections. Recently, pH-sensitive copolymers have fascinated incredible attention to tackle biofilm-related infections. However, the proper incorporation of pH-sensitive segments in the polymer chains, which could significantly affect the biofilms targeting ability, has not been particularly investigated. Herein, we synthesized three types of pH-sensitive copolymers based on poly (ß-amino ester) (PAE), poly (lactic-co-glycolic acid) (PLA) and polyethylene glycol (PEG), PAE-PLA-mPEG (A-L-E), PLA-PAE-mPEG (L-A-E) and PLA-PEG-PAE (L-E-A) to address this issue. RESULTS: The three copolymers could self-assemble into micelles (MA-L-E, ML-A-E and ML-E-A) in aqueous medium. Compared with MA-L-E and ML-A-E, placing the PAE at the distal PEG end of PLA-PEG to yield PLA-PEG-PAE (ML-E-A) was characterized with proper triggering pH, fully biofilm penetration, and high cell membrane binding affinity. Further loaded with Triclosan (TCS), ML-E-A/TCS could efficiently kill the bacteria either in planktonic or biofilm mode. We reasoned that PAE segments would be preferentially placed near the surface and distant from the hydrophobic PLA segments. This would increase the magnitude of surface charge-switching capability, as the cationic PAE+ would easily disassociate from the inner core without conquering the additional hydrophobic force arising from covalent linkage with PLA segments, and rapidly rise to the outermost layer of the micellar surface due to the relative hydrophilicity. This was significant in that it could enable the micelles immediately change its surface charge where localized acidity occurred, and efficiently bind themselves to the bacterial surface where they became hydrolyzed by bacterial lipases to stimulate release of encapsulated TCS even a relatively short residence time to prevent rapid wash-out. In vivo therapeutic performance of ML-E-A/TCS was evaluated on a classical biofilm infection model, implant-related biofilm infection. The result suggested that ML-E-A/TCS was effective for the treatment of implant-related biofilm infection, which was proved by the efficient clearance of biofilm-contaminated catheters and the recovery of surrounding infected tissues. CONCLUSIONS: In summary, elaboration on the architecture of pH-sensitive copolymers was the first step to target biofilm. The ML-E-A structure may represent an interesting future direction in the treatment of biofilm-relevant infections associated with acidity.


Assuntos
Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , Micelas , Animais , Antibacterianos/química , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos , Concentração de Íons de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Masculino , Poliésteres/química , Poliésteres/farmacologia , Polietilenoglicóis/química , Polietilenoglicóis/farmacologia , Polímeros/química , Polímeros/farmacologia , Ratos , Ratos Sprague-Dawley
18.
Cell Death Dis ; 12(8): 735, 2021 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-34301920

RESUMO

Non-coding RNAs (ncRNAs) involve in diverse biological processes by post-transcriptional regulation of gene expression. Emerging evidence shows that miRNA-4293 plays a significant role in the development of non-small cell lung cancer. However, the oncogenic functions of miR-4293 have not been studied. Our results demonstrated that miR-4293 expression is markedly enhanced in lung carcinoma tissue and cells. Moreover, miR-4293 promotes tumor cell proliferation and metastasis but suppresses apoptosis. Mechanistic investigations identified mRNA-decapping enzyme 2 (DCP2) as a target of miR-4293 and its expression is suppressed by miR-4293. DCP2 can directly or indirectly bind to WFDC21P and downregulates its expression. Consequently, miR-4293 can further promote WFDC21P expression by regulating DCP2. With a positive correlation to miR-4293 expression, WFDC21P also plays an oncogenic role in lung carcinoma. Furthermore, knockdown of WFDC21P results in functional attenuation of miR-4293 on tumor promotion. In vivo xenograft growth is also promoted by both miR-4293 and WFDC21P. Overall, our results establish oncogenic roles for both miR-4293 and WFDC21P and demonstrate that interactions between miRNAs and lncRNAs through DCP2 are important in the regulation of carcinoma pathogenesis. These results provided a valuable theoretical basis for the discovery of lung carcinoma therapeutic targets and diagnostic markers based on miR-4293 and WFDC21P.


Assuntos
Regulação Neoplásica da Expressão Gênica , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , MicroRNAs/metabolismo , RNA Longo não Codificante/genética , Regulação para Cima/genética , Adulto , Idoso , Animais , Apoptose/genética , Sequência de Bases , Carcinogênese/genética , Carcinogênese/patologia , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Feminino , Técnicas de Silenciamento de Genes , Humanos , Masculino , Camundongos Endogâmicos BALB C , Camundongos Nus , MicroRNAs/genética , Pessoa de Meia-Idade , Modelos Biológicos , Ligação Proteica , RNA Longo não Codificante/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fator de Transcrição STAT3/metabolismo
19.
Exp Gerontol ; 153: 111499, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34329721

RESUMO

We prepared nanostructured lipid carriers (NLC) to promote skin permeation of Corylin so that it can increase its effect on photoaging. Corylin-NLCs were prepared and characterized based on morphology, particle size, zeta potentials, FTIR and DSC. In vitro, we assess the cytotoxicity and lactate dehydrogenase (LDH) of HaCaT cells irradiated by UVB. Expression of antioxidant enzymes was evaluated by commercial kits. The effects of Corylin-NLC on apoptosis were confirmed by flow cytometry and western blotting. In vivo, we use UV irradiated mouse as the oxidative stress model to assess the therapeutic effect of Corylin loaded NLC gel. We identified the Corylin-NLCs can significantly suppress the LDH release, decrease MDA content, increase in CAT, SOD, GSH-Px activity, increase the expression of Bcl-2/Bax protein and reduce the expression of cleaved caspase-3/caspase-3 protein on UVB induced HaCaT cells. The histopathological lesions were significantly improved and observably decreased MDA level, increase in antioxidant enzymes activity in serum of mice by pretreatment of Corylin-NLCs gel. Overall, this study proposes a promising strategy for improving the therapeutic efficacy of photoaging.


Assuntos
Nanoestruturas , Envelhecimento da Pele , Animais , Portadores de Fármacos , Flavonoides , Lipídeos , Camundongos
20.
J Control Release ; 334: 114-126, 2021 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-33887284

RESUMO

Inflammatory microenvironments (IMEs) are common pathological characteristics and drive the development of multiple chronic diseases. Thus, IME-targeted therapies exhibit potential for the treatment of inflammatory diseases. Nanoplatforms have significant advantages in improving the efficiency of anti-inflammatory treatments. Owing to their improved therapeutic effects and reduced side effects, IME-targeted nanotherapies have recently drawn interest from the research community. This review introduces IMEs and discusses the application of IME-targeted nanotherapies for inflammatory diseases. The development of rational targeting strategies tailored to IMEs in damaged tissues can help promote therapies for chronic diseases.


Assuntos
Anti-Inflamatórios
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...