Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Planta ; 260(1): 19, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38839605

RESUMO

MAIN CONCLUSION: A mutation was first found to cause the great generation of glutelin precursors (proglutelins) in rice (Oryza sativa L.) endosperm, and thus referred to as GPGG1. The GPGG1 was involved in synthesis and compartmentation of storage proteins. The PPR-like gene in GPGG1-mapped region was determined as its candidate gene. In the wild type rice, glutelins and prolamins are synthesized on respective subdomains of rough endoplasmic reticulum (ER) and intracellularly compartmentalized into different storage protein bodies. In this study, a storage protein mutant was obtained and characterized by the great generation of proglutelins combining with the lacking of 13 kD prolamins. A dominant genic-mutation, referred to as GPGG1, was clarified to result in the proteinous alteration. Novel saccular composite-ER was shown to act in the synthesis of proglutelins and 14 kD prolamins in the mutant. Additionally, a series of organelles including newly occurring several compartments were shown to function in the transfer, trans-plasmalemmal transport, delivery, deposition and degradation of storage proteins in the mutant. The GPGG1 gene was mapped to a 67.256 kb region of chromosome 12, the pentatricopeptide repeat (PPR)-like gene in this region was detected to contain mutational sites.


Assuntos
Endosperma , Glutens , Mutação , Oryza , Oryza/genética , Oryza/metabolismo , Endosperma/genética , Endosperma/metabolismo , Glutens/genética , Glutens/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Prolaminas/genética , Prolaminas/metabolismo , Proteínas de Armazenamento de Sementes/genética , Proteínas de Armazenamento de Sementes/metabolismo , Retículo Endoplasmático/metabolismo , Mapeamento Cromossômico , Genoma de Planta/genética
2.
Waste Manag ; 172: 162-170, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37918309

RESUMO

To reduce the cost of Si-Al aerogels preparation, circulating fluidized bed fly ash (CFA) was developed to be as the alternative to synthetic precursors. High energy consumption of alkali-melting and secondary wastes production were the major challenges. Here, a technique characterized by effective energy consumption and non-secondary waste was developed to convert CFA into Si-Al aerogel. The process consists two stages, preparation of Si-Al sol by sintering of CFA and Na2CO3 followed by sulfuric acid leaching, and synthesis of Si-Al aerogel by so-gel with trimethyl chlorosilane modification and ambient pressure drying. The optimization results of proportion and sintering temperature showed that the optimal temperature of sintering of Na2CO3 and CFA with the mass ratio of 0.7 was 750 °C, 100 °C lower than that of most other waste aluminosilicate materials. CaSO4·0.5H2O which meet building gypsum requirement was obtained by specifying the drying temperature of acid-leached residue at 126 °C for 2 h. The modification procedure was explored to obtain Si-Al aerogel with a large specific surface area of 857 m2/g and hydrophobic angle of 139.3°. Thermal and mechanical properties tests indicated that the Si-Al aerogels and gypsum produced from CFA exhibited promising thermal insulation and the potential application in construction.


Assuntos
Cinza de Carvão , Silício , Cinza de Carvão/química , Sulfato de Cálcio , Alumínio , Resíduos
3.
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi ; 40(4): 725-735, 2023 Aug 25.
Artigo em Chinês | MEDLINE | ID: mdl-37666763

RESUMO

Keloids are benign skin tumors resulting from the excessive proliferation of connective tissue in wound skin. Precise prediction of keloid risk in trauma patients and timely early diagnosis are of paramount importance for in-depth keloid management and control of its progression. This study analyzed four keloid datasets in the high-throughput gene expression omnibus (GEO) database, identified diagnostic markers for keloids, and established a nomogram prediction model. Initially, 37 core protein-encoding genes were selected through weighted gene co-expression network analysis (WGCNA), differential expression analysis, and the centrality algorithm of the protein-protein interaction network. Subsequently, two machine learning algorithms including the least absolute shrinkage and selection operator (LASSO) and the support vector machine-recursive feature elimination (SVM-RFE) were used to further screen out four diagnostic markers with the highest predictive power for keloids, which included hepatocyte growth factor (HGF), syndecan-4 (SDC4), ectonucleotide pyrophosphatase/phosphodiesterase 2 (ENPP2), and Rho family guanosine triphophatase 3 (RND3). Potential biological pathways involved were explored through gene set enrichment analysis (GSEA) of single-gene. Finally, univariate and multivariate logistic regression analyses of diagnostic markers were performed, and a nomogram prediction model was constructed. Internal and external validations revealed that the calibration curve of this model closely approximates the ideal curve, the decision curve is superior to other strategies, and the area under the receiver operating characteristic curve is higher than the control model (with optimal cutoff value of 0.588). This indicates that the model possesses high calibration, clinical benefit rate, and predictive power, and is promising to provide effective early means for clinical diagnosis.


Assuntos
Queloide , Humanos , Queloide/diagnóstico , Queloide/genética , Nomogramas , Algoritmos , Calibragem , Aprendizado de Máquina
4.
Nanoscale ; 14(39): 14645-14660, 2022 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-36165075

RESUMO

Nuclear targeted delivery has great potential in improving the efficiency of non-viral carrier mediated genome editing. However, direct and efficient delivery of CRISPR/Cas9 plasmid into the nucleus remains a challenge. In this study, a nuclear targeted gene delivery platform based on fluorescent carbon quantum dots (CQDs) was developed. Polyethylenimine (PEI) and polyethylene glycol (PEG) synergistically passivated the surface of CQDs, providing an excitation-independent green-emitting fluorescent CQDs-PEI-PEG conjugate (CQDs-PP) with an ultra-small size and positive surface charge. Here we show that CQDs-PP could bind CRISPR/Cas9 plasmid to form a nano-complex by electrostatic attraction, which can bypass lysosomes and enter the nucleus by passive diffusion, and thereby improve the transfection efficiency. Also, CQDs-PP could deliver CRISPR/Cas9 plasmid into HeLa cells, resulting in the insertion/deletion mutation of the target EFHD1 gene. More importantly, CQDs-PP exhibited a considerably higher gene editing efficiency as well as comparable or lower cytotoxicity relative to Lipo2000 and PEI-passivated CQDs-PEI (CQDs-P). Thus, the nuclear-targeted CQDs-PP is expected to constitute an efficient CRISPR/Cas9 delivery carrier in vitro with imaging-trackable ability.


Assuntos
Sistemas CRISPR-Cas , Pontos Quânticos , Carbono , Células HeLa , Humanos , Polietilenoglicóis , Polietilenoimina
5.
Sensors (Basel) ; 21(2)2021 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-33430417

RESUMO

The hermeticity performance of the cavity structure has an impact on the long-term stability of absolute pressure sensors for high temperature applications. In this paper, a bare silicon carbide (SiC) wafer was bonded to a patterned SiC substrate with shallow grooves based on a room temperature direct bonding process to achieve a sealed cavity structure. Then the hermeticity analysis on the SiC cavity structure was performed. The microstructure observation demonstrates that the SiC wafers are tightly bonded and the cavities remain intact. Moreover, the tensile testing indicates that the tensile strength of bonding interface is ~8.01 MPa. Moreover, the quantitative analysis on the airtightness of cavity structure through leakage detection shows a helium leak rate of ~1.3 × 10-10 Pa⋅m3/s, which satisfies the requirement of the specification in the MIL-STD-883H. The cavity structure can also avoid an undesirable deep etching process and the problem caused by the mismatch of thermal expansion coefficients, which can be potentially further developed into an all-SiC piezoresistive pressure sensor employable for high temperature applications.

6.
Ecotoxicol Environ Saf ; 207: 111221, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-32911181

RESUMO

Pydiflumetofen is a novel and efficient broad-spectrum chiral fungicide consisting of a pair of enantiomers. A simple and sensitive chiral analytical method was established to determine the enantiomers of this chiral fungicide in food and environmental samples by ultra-high-performance liquid chromatography tandem triple quadrupole mass spectrometry (UHPLC-MS/MS) using QuEChERS method coupled with octadecylsilane-dispersive solid-phase extraction (C18-dSPE) as extraction procedure. The specific optical rotation and the absolute configuration of the enantiomers were identified by polarimetry and electronic circular dichroism (ECD). The elution order of the pydiflumetofen enantiomers on Lux Cellulose-2 was S-(-)-pydiflumetofen and R-(+)-pydiflumetofen. The average recoveries of eleven matrices ranged from 71.3% to 107.4%. The intraday relative standard deviations (RSDs) were less than 11.8%, and the interday RSDs were less than 12.6% for the two enantiomers. Stereoselective dissipation in pakchoi and soil were observed: S-(-)-pydiflumetofen was degraded faster than R-(+)-pydiflumetofen in pakchoi, causing the enantiomer fraction (EF) of the enantiomers to change from 0.50 to 0.42 in 7 days. However, R-(+)-pydiflumetofen was degraded faster than S-(-)-pydiflumetofen in soil, causing the EF of the enantiomers to change from 0.49 to 0.52 in 21 days. This study provides a method for monitoring pydiflumetofen enantiomer residues, which is crucial for improving risk assessments and the development of chiral pesticides.


Assuntos
Fungicidas Industriais/análise , Pirazóis/análise , Cromatografia Líquida de Alta Pressão/métodos , Cromatografia Líquida , Praguicidas/análise , Solo/química , Poluentes do Solo/análise , Extração em Fase Sólida/métodos , Estereoisomerismo , Espectrometria de Massas em Tandem/métodos
7.
Mikrochim Acta ; 187(9): 484, 2020 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-32757083

RESUMO

Silver nanoparticle (Ag NP)-coated carbon quantum dot (CQD) core-shell-structured nanocomposites (CQD@Ag NCs) were developed for fluorescent imaging of intracellular superoxide anion (O2•-). The morphology of CQD@Ag NCs was investigated by transmission electron microscopy, and the composition was characterized by X-ray diffraction and X-ray photoelectron spectroscopy. CQDs display blue fluorescence with excitation/emission maxima at 360/440 nm, and the fluorescence was quenched by Ag NPs in CQD@Ag NCs. In the presence of O2•-, Ag NPs were oxide-etched and the fluorescence of CQDs was recovered. A linearity between the relative fluorescence intensity and O2•- solution concentration within the range 0.6 to 1.6 µM was found, with a detection limit of 0.3 µM. Due to their high sensitivity, selectivity, and low cytotoxicity, the as-synthesized CQD@Ag NCs have been successfully applied for imaging of O2•- in MCF-7 cells during the whole process of autophagy induced by serum starvation. In our perception, the developed method provides a cost-effective, sensitive, and selective tool in bioimaging and monitoring of intracellular O2•- changes, and is promising for potential biological applications. Graphical abstract Illustration of the synthesis of carbon quantum Dot@Silver nanocomposites (CQD@Ag NCs), and CQD@Ag NCs as a "turn-on" nanoprobe for fluorescent imaging of intracellular superoxide anion.


Assuntos
Corantes Fluorescentes/química , Nanocompostos/química , Pontos Quânticos/química , Superóxidos/análise , Carbono/química , Carbono/efeitos da radiação , Carbono/toxicidade , Corantes Fluorescentes/efeitos da radiação , Corantes Fluorescentes/toxicidade , Humanos , Limite de Detecção , Células MCF-7 , Nanopartículas Metálicas/química , Nanopartículas Metálicas/efeitos da radiação , Nanopartículas Metálicas/toxicidade , Microscopia de Fluorescência , Nanocompostos/efeitos da radiação , Nanocompostos/toxicidade , Pontos Quânticos/efeitos da radiação , Pontos Quânticos/toxicidade , Prata/química , Prata/efeitos da radiação , Prata/toxicidade , Raios Ultravioleta
8.
Materials (Basel) ; 14(1)2020 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-33396814

RESUMO

High hardness and corrosion resistance of SiC (silicon carbide) bulk materials have always been a difficult problem in the processing of an all-SiC piezoresistive pressure sensor. In this work, we demonstrated a SiC sealing cavity structure utilizing SiC shallow plasma-etched process (≤20 µm) and SiC-SiC room temperature bonding technology. The SiC bonding interface was closely connected, and its average tensile strength could reach 6.71 MPa. In addition, through a rapid thermal annealing (RTA) experiment of 1 min and 10 mins in N2 atmosphere of 1000 °C, it was found that Si, C and O elements at the bonding interface were diffused, while the width of the intermediate interface layer was narrowed, and the tensile strength could remain stable. This SiC sealing cavity structure has important application value in the realization of an all-SiC piezoresistive pressure sensor.

9.
Pest Manag Sci ; 76(4): 1549-1559, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31696614

RESUMO

BACKGROUND: Pydiflumetofen is a new generation succinate dehydrogenase inhibitor currently undergoing the process of registration in China for the control of Fusarium head blight in wheat. A resistance risk assessment of Fusarium graminearum to pydiflumetofen was undertaken in this study. RESULTS: A total of 75 pydiflumetofen-resistant mutants were generated through spontaneous selection and displayed high resistance with an average resistance factor (RF) value of 78. Four mutants were generated through UV mutagenesis and displayed very high resistance with an RF value >1000. The sequence analysis results for Sdh genes and fitness studies revealed the existence of four types of mutations. In particular, 32 spontaneous selection mutants (SP mutants) had an arginine (R) to histidine (H) transition at position 86 in FGSdhC, resulting in seriously reduced fitness. Seven SP mutants had an R to cysteine (C) transition at position 86 in FGSdhC, resulting in reduced fitness. Thirty-six SP mutants had an alanine (A) to valine (V) transition at position 83 in FGSdhC and had no fitness penalties. The efficacy of pydiflumetofen towards a mutant carrying A83V in FGSdhC in vivo was significantly decreased at 42.7%. Four UV mutants had no mutations on all Sdh genes and no fitness penalties. Cross-resistance among boscalid, fluopyram and pydiflumetofen was observed. CONCLUSION: Sdhc mutations were found and other target site resistance may be present in laboratory PR mutants of F. graminearum. An overall moderate risk of resistance development in F. graminearum was recommended for pydiflumetofen. © 2019 Society of Chemical Industry.


Assuntos
Fusarium , China , Farmacorresistência Fúngica , Fungicidas Industriais , Doenças das Plantas , Medição de Risco , Succinato Desidrogenase , Ácido Succínico
10.
Plant Physiol Biochem ; 139: 325-332, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30947063

RESUMO

Cysteine is the first organic molecule generated during the assimilation of sulfate. As such, cysteine and its derivatives are always essential signal molecules and thus have important roles in the regulation of many plant processes. O-acetylserine (thiol) lyase (OASTL) catalyzes the last step of the biosynthesis of cysteine. At present, detailed and comprehensive work about these enzymes has only been reported from the plant Arabidopsis thaliana, though sporadic studies on OASTL have been conducted on other dicots, such as spinach and soybean. However, few reports on the functions of OASTLs in monocots have been found in the literature. Here in this study, we obtained four SiOASTL genes (SiOASTL7, SiOASTL8, SiOASTL9 and SiOASTL10) from foxtail millet and analyzed their potential functions. Phylogenetically, the four SiOASTL genes did not belong to any published subfamily of the OASTL genes; instead they constituted a new subfamily specific to the OASTL genes from monocots. In sequencing, we found that with the exception of the pseudogene SiOASTL8, proteins encoded by the other three genes exhibited high similarity with OASTL proteins from Arabidopsis, though the critical PLP-binding sites of both SiOASTL7 and SiOASTL10 were missing. The enzymatic activity assays demonstrated that SiOASTL9 has the ability to catalyze the biosynthesis of both cysteine and S-sulfocysteine, while SiOASTL7 and SiOASTL10 did not possess any previously reported catalyzing abilities. In addition, the gene expression pattern analysis showed that all four genes were widely expressed in various tissues of foxtail millet, and all had a preference in the leaves. Under abiotic stresses, the expression of these genes could be induced by salt and drought stress. Our finding that cadmium could only up-regulate the transcription of SlOASTL8 and SlOASTL9, further indicates the diversified responses of SiOASTLs to abiotic stresses.


Assuntos
Proteínas de Plantas/metabolismo , Setaria (Planta)/enzimologia , Setaria (Planta)/metabolismo , Ensaios Enzimáticos/métodos , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Setaria (Planta)/genética
11.
Biomicrofluidics ; 12(3): 034111, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29937951

RESUMO

This paper presents a novel manipulation method for micro-objects using acoustically oscillating bubbles with a controllable position based on the gas permeability of polydimethylsiloxane. The oscillating bubble trapped within the side channel attracts the neighboring micro-objects, and the position of the air-liquid interface is controlled by generating temporary pressure difference between the side channel and the air channel. To demonstrate the feasibility of the method in technological applications, polystyrene microparticles of 10 µm in diameter were successfully captured, transported, and released. The influence of pressure difference on the movement speed of the air-liquid interface was demonstrated in our experiments, and the manipulation performance was also characterized by varying the frequency of the acoustic excitation and the pressure difference. Since the bubble generation and the air-liquid interface movement in our manipulation method do not need any electrochemical reaction and any high temperature, this on-chip manipulation method provides a controllable, efficient, and noninvasive tool for handling micro-objects such as particles, cells, and other entities. The whole manipulation process, including capturing, transporting, and releasing of particles, spent less than 1 min. It can be used to select the cells and particles in the microfluidic device or change the cell culture medium.

12.
Front Biosci (Landmark Ed) ; 22(3): 530-538, 2017 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-27814630

RESUMO

Methyl jasmonate (MeJA), a vital cellular regulator, mediates diverse developmental processes and defense responses against environmental stresse. Recently, a novel gasotransmitter, hydrogen sulfide (H2S), was found to have similar functions, but the interactions between H2S and MeJA in the acquisition of cadmium (Cd) tolerance have not been reported. Treating foxtail millet with 1 microM MeJA not only enhanced Cd tolerance and alleviated growth inhibitions but also decreased the contents of hydrogen peroxide, malondialdehyde and Cd in seedlings under 200 microM of Cd stress. Exogenous application of MeJA inhibited the transcript levels of the Natural Resistance-Associated Macrophage Protein (NRAMP1 and NRAMP6) and intensified Cd-induced expression of the homeostasis-related genes (MTP1, MTP12, CAX2 and ZIP4, besides HMA3). In addition, treatment with MeJA induced the production of endogenous H2S. Fumigation with sodium hydrosulfide (H2S donor) significantly enhanced MeJA-induced Cd tolerance, but this ability was weakened when H2S biosynthesis was inhibited with hydroxylamine. These results suggest that pretreatment with MeJA alleviated Cd stress and that this improvement was mediated by H2S in foxtail millet.


Assuntos
Acetatos/metabolismo , Cádmio/toxicidade , Ciclopentanos/metabolismo , Sulfeto de Hidrogênio/metabolismo , Oxilipinas/metabolismo , Setaria (Planta)/efeitos dos fármacos , Setaria (Planta)/metabolismo , Acetatos/farmacologia , Cádmio/farmacocinética , Ciclopentanos/farmacologia , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Sulfeto de Hidrogênio/farmacologia , Peroxidação de Lipídeos , Malondialdeído/metabolismo , Oxilipinas/farmacologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA de Plantas/genética , RNA de Plantas/metabolismo , Setaria (Planta)/genética , Estresse Fisiológico , Sulfetos/metabolismo , Sulfetos/farmacologia , Superóxidos/metabolismo
13.
Plant Physiol Biochem ; 109: 293-299, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27771582

RESUMO

Hydrogen sulfide (H2S) and some functional amino acids in crops have been involved in the defense system against heavy-metal pollution. Here we report the relationships and functions of H2S and proline to cadmium (Cd) stress. Sodium hydrosulfide (NaHS) pretreatment decreased the electrolytic leakage and the malondialdehyde and hydrogen peroxide contents while enhancing photosynthesis in Cd-treated seedlings. Furthermore, pretreatment with NaHS markedly exacerbated Cd-induced alterations in proline content, the activities of proline-5-carboxylate reductase (P5CR) and proline dehydrogenase (PDH), and the transcript levels of P5CR and PDH. When endogenous H2S was scavenged or inhibited by various H2S modulators, the Cd-induced increase in endogenous proline was weakened. Combined pretreatment with H2S and proline was moderately higher in the Cd-stressed growth status, stomata movements and oxidative damage of seedlings compared to a single treatment with H2S or proline. These results suggest that H2S and proline cooperate to alleviate Cd-damage in foxtail millet.


Assuntos
Cádmio/toxicidade , Sulfeto de Hidrogênio/metabolismo , Prolina/metabolismo , Setaria (Planta)/efeitos dos fármacos , Setaria (Planta)/metabolismo , Sulfeto de Hidrogênio/farmacologia , Prolina/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Plântula/efeitos dos fármacos , Plântula/metabolismo , Setaria (Planta)/genética , Poluentes do Solo/toxicidade , Estresse Fisiológico
14.
Plant Mol Biol ; 84(3): 243-57, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24214124

RESUMO

The d2003 is a natural dwarf mutant from maize inbred line K36 and has less than one-third of K36 plant height with severely shortened internodes. In this study, we reported the cloning of d2003 gene using positional cloning. The results showed that there was a single-base insertion in the coding region of Viviparous8 (VP8) in d2003 mutant, which resulted in a premature stop codon. Further genetic allelism tests confirmed that d2003 mutation is a novel allele of VP8. VP8 is mainly expressed in the stem apex, young leaves, and developing vascular tissues, and its expression levels in nodes are significantly higher than that in internodes at 12-leaf stage. Subcellular localization demonstrated that the VP8 protein is localized to the endoplasmic reticulum and the N-terminal 26 amino acids (aa) of VP8 protein are essential to its localization in ER. Further transgenic experiments showed that lack of the 26 aa leads to loss of VP8 function in Arabidopsis amp1 phenotype rescue. These results strongly suggested that the N-terminal 26 aa is critical for VP8 protein localization, and the correct protein localization of VP8 in ER is necessary for its function.


Assuntos
Alelos , Genes de Plantas , Zea mays/genética , Sequência de Aminoácidos , Sequência de Bases , Clonagem Molecular , Retículo Endoplasmático/metabolismo , Regulação da Expressão Gênica de Plantas , Dados de Sequência Molecular , Mutação , Homologia de Sequência do Ácido Nucleico , Zea mays/fisiologia
15.
Plant Physiol Biochem ; 62: 41-6, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23178483

RESUMO

Hydrogen sulfide (H(2)S) plays a crucial role in the regulation of stomatal closure in plant response to drought stress, and l-cysteine desulfhydrase (LCD) has been identified as being mainly responsible for the degradation of cysteine to generate H(2)S. In view of the similar roles to abscisic acid (ABA), in this study, the lcd, aba3 and abi1 mutants were studied to investigate the close inter-relationship between H(2)S and ABA. The lcd mutant showed enlarged stomatal aperture and more sensitivity to drought stress than wild-type plants. Expression of Ca(2+) channel and outward-rectifying K(+) channel coding genes decreased in the lcd mutant, and conversely, expression of inward-rectifying K(+) increased. The stomatal aperture of aba3 and abi1 mutants decreased after treatment with NaHS (a H(2)S donor), but stomatal closure in responses to ABA was impaired in the lcd mutant. The expression of LCD and H(2)S production rate decreased in both the aba3 and abi1 mutants. Transcriptional expression of ABA receptor candidates was upregulated in the lcd mutant and decreased with NaHS treatment. The above results suggested that H(2)S may be an important link in stomatal regulation by ABA via ion channels; H(2)S affected the expression of ABA receptor candidates; and ABA also influenced H(2)S production. Thus, H(2)S interacted with ABA in the stomatal regulation responsible for drought stress in Arabidopsis.


Assuntos
Ácido Abscísico/metabolismo , Arabidopsis/metabolismo , Cisteína/metabolismo , Sulfeto de Hidrogênio/metabolismo , Estômatos de Plantas/metabolismo , Estresse Fisiológico/fisiologia , Ácido Abscísico/genética , Arabidopsis/genética , Proteínas de Arabidopsis/biossíntese , Proteínas de Arabidopsis/genética , Cisteína/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Mutação , Estômatos de Plantas/genética
16.
Theor Appl Genet ; 124(1): 223-32, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22057118

RESUMO

Deep-seeding tolerant seeds can emerge from deep soil where the moisture is suitable for seed germination. Breeding deep-seeding tolerant cultivars is becoming increasingly important in arid and semi-arid regions. To dissect the quantitative trait loci (QTL) controlling deep-seeding tolerance traits, we selected a tolerant maize inbred line 3681-4 and crossed it with the elite inbred line-X178 to generate an F(2) population and the derivative F(2:3) families. A molecular linkage map composed of 179 molecular markers was constructed, and 25 QTL were detected including 10 QTL for sowing at 10 cm depth and 15 QTL for sowing at 20 cm depth. The QTL analysis results confirmed that deep-seeding tolerance was mainly caused by mesocotyl elongation and also revealed considerable overlap among QTL for different traits. To confirm a major QTL on chromosome 10 for mesocotyl length measured at 20 cm depth, we selected and self-pollinated a BC(3)F(2) plant that was heterozygous at the markers around the target QTL and homozygous at other QTL to generate a BC(3)F(3) population. We found that this QTL explained more phenotypic variance in the BC(3)F(3) population than that in the F(2) population, which laid the foundation for fine mapping and NIL (near-isogenic line) construction.


Assuntos
Locos de Características Quantitativas , Zea mays/genética , Mapeamento Cromossômico , Ligação Genética , Germinação/genética , Repetições de Microssatélites , Plântula/anatomia & histologia , Plântula/genética , Plântula/crescimento & desenvolvimento , Zea mays/anatomia & histologia , Zea mays/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...