Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Microbiome ; 11(1): 48, 2023 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-36895023

RESUMO

BACKGROUND: Root-knot nematodes (RKN) are among the most important root-damaging plant-parasitic nematodes, causing severe crop losses worldwide. The plant rhizosphere and root endosphere contain rich and diverse bacterial communities. However, little is known about how RKN and root bacteria interact to impact parasitism and plant health. Determining the keystone microbial taxa and their functional contributions to plant health and RKN development is important for understanding RKN parasitism and developing efficient biological control strategies in agriculture. RESULTS: The analyses of rhizosphere and root endosphere microbiota of plants with and without RKN showed that host species, developmental stage, ecological niche, and nematode parasitism, as well as most of their interactions, contributed significantly to variations in root-associated microbiota. Compared with healthy tomato plants at different developmental stages, significant enrichments of bacteria belonging to Rhizobiales, Betaproteobacteriales, and Rhodobacterales were observed in the endophytic microbiota of nematode-parasitized root samples. Functional pathways related to bacterial pathogenesis and biological nitrogen fixation were significantly enriched in nematode-parasitized plants. In addition, we observed significant enrichments of the nifH gene and NifH protein, the key gene/enzyme involved in biological nitrogen fixation, within nematode-parasitized roots, consistent with a potential functional contribution of nitrogen-fixing bacteria to nematode parasitism. Data from a further assay showed that soil nitrogen amendment could reduce both endophytic nitrogen-fixing bacteria and RKN prevalence and galling in tomato plants. CONCLUSIONS: Results demonstrated that (1) community variation and assembly of root endophytic microbiota were significantly affected by RKN parasitism; (2) a taxonomic and functional association was found for endophytic nitrogen-fixing bacteria and nematode parasitism; and (3) the change of nitrogen-fixing bacterial communities through the addition of nitrogen fertilizers could affect the occurrence of RKN. Our results provide new insights into interactions among endophytic microbiota, RKN, and plants, contributing to the potential development of novel management strategies against RKN. Video Abstract.


Assuntos
Microbiota , Nematoides , Bactérias Fixadoras de Nitrogênio , Solanum lycopersicum , Animais , Doenças das Plantas/parasitologia , Plantas , Bactérias/genética , Nitrogênio , Raízes de Plantas/microbiologia
3.
Front Plant Sci ; 13: 928367, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36105708

RESUMO

The introduction and inoculation of beneficial bacteria in plants have consistently been considered as one of the most important ways to improve plant health and production. However, the effects of bacterial inoculation on the community assembly and composition of the root endophytic microbiome remain largely unknown. In this study, 55 strains were randomly isolated from tomato roots and then inoculated into wheat seeds singly or in combination. Most of the isolated bacterial strains showed an ability to produce lignocellulose-decomposing enzymes and promote plant growth. The results demonstrated that bacterial inoculation had a significant effect on the wheat root endophytic microbiome. The wheat root samples inoculated with single-bacterial species were significantly separated into two groups (A and B) that had different community structures and compositions. Among these, root endophytic communities for most wheat samples inoculated with a single-bacterial strain (Group A) were predominated by one or several bacterial species, mainly belonging to Enterobacterales. In contrast, only a few of the root samples inoculated with a single-bacterial strain (Group B) harbored a rich bacterial flora with relatively high bacterial diversity. However, wheat roots inoculated with a mixed bacterial complex were colonized by a more diverse and abundant bacterial flora, which was mainly composed of Enterobacterales, Actinomycetales, Bacillales, Pseudomonadales, and Rhizobiales. The results demonstrated that inoculation with bacterial complexes could help plants establish more balanced and beneficial endophytic communities. In most cases, bacterial inoculation does not result in successful colonization by the target bacterium in wheat roots. However, bacterial inoculation consistently had a significant effect on the root microbiome in plants. CAP analysis demonstrated that the variation in wheat root endophytic communities was significantly related to the taxonomic status and lignocellulose decomposition ability of the inoculated bacterial strain (p < 0.05). To reveal the role of lignocellulose degradation in shaping the root endophytic microbiome in wheat, four bacterial strains with different colonization abilities were selected for further transcriptome sequencing analysis. The results showed that, compared with that in the dominant bacterial species Ent_181 and Ent_189 of Group A, the expression of lignocellulose-decomposing enzymes was significantly downregulated in Bac_133 and Bac_71 (p < 0.05). In addition, we found that the dominant bacterial species of the tomato endophytic microbiome were more likely to become dominant populations in the wheat root microbiome. In general, our results demonstrated that lignocellulose-decomposing enzymes played a vital role in the formation of endophytes and their successful colonization of root tissues. This finding establishes a theoretical foundation for the development of broad-spectrum probiotics.

4.
Front Microbiol ; 13: 861291, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35633692

RESUMO

In eutrophic water, attached bacteria of Microcystis play an important role in the formation, development, and degradation of Microcystis blooms. A novel actinobacterium, designated as JXJ CY 35T, was isolated from the culture mass of Microcystis aeruginosa FACHB-905 (Maf) collected from Lake Dianchi, Yunnan Province, China. Strain JXJ CY 35T was gram-positive, acid-fast staining, aerobic, with short rod-shaped cells, positive for catalase, and negative for oxidase. The isolate was able to grow at 10.0-36.0°C, pH 4.0-10.0, and tolerate up to 5.0% (w/v) NaCl, with optimal growth at 28°C, pH 7.0-8.0, and 0% (w/v) NaCl. Cell-wall peptidoglycan contains aspartic acid, glutamic acid, glycine, and alanine, with mannose, ribose, galactose, and arabinose as whole-cell sugars. Polar lipids consist of diphosphatidylglycerol (DPG), phosphatidylethanolamine (PE), glycolipid (GL1-3), phosphoglycolipid (PGL), phosphatidylinositol (PI), and unidentified lipid (L1). The predominant menaquinone was MK-9. Major fatty acids (>10%) were C17:1ω7c (37.0%) and C18:1ω9c (18.9%). The complete genome sequence of strain JXJ CY 35T was 6,138,096 bp in size with a DNA G + C content of 68.3%. Based on 16S rRNA gene sequences, it has 98.2% similarity to Mycolicibacterium arabiense JCM 18538T. The digital DNA-DNA hybridization (dDDH) and average nucleotide identity (ANI) values between strain JXJ CY 35T and the closest five type strains M. arabiense JCM 18538T, M. goodii ATCC 700504T, M. mageritense DSM 44476T, M. austroafricanum DSM 44191T, and Mycobacterium neglectum CECT 8778T were 52.1, 20.3, 20.3, 20.6, and 19.8%, and 92.7, 75.5, 75.6, 76.0, and 75.2%, respectively. On the basis of the above taxonomic data and differences in physiological characteristics from the closely related type strain, strain JXJ CY 35T was determined to represent a novel species of genus Mycolicibacterium, for which the name Mycolicibacterium lacusdiani sp. nov., is proposed. The type strain is JXJ CY 35T (=KCTC 49379T = CGMCC 1.17501T). Different inoculation dosages of the type strain JXJ CY 35T could exhibit different effects on the growth of Maf and its toxin synthesis and release. Strain JXJ CY 35T could promote the growth of Maf by providing it with available phosphorus, nitrogen, probably vitamins, and plant growth hormones.

5.
Antonie Van Leeuwenhoek ; 115(1): 141-153, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34846610

RESUMO

Attached bacteria of Microcystis play important roles in the occurence, outbreak and decline of Microcystis water blooms. In this study, a novel actinobacterium, designated strain JXJ CY 38 T, was isolated from the culture mass of Microcystis aeruginosa FACHB-905 (MAF), collected from Lake Dianchi, south-west, China. The strain was found to be a Gram-stain positive, short rod, catalase positive and oxidase negative. The isolate was found to be able to grow at 5.0-38.0 °C (optimum, 28.0 °C), pH 4.0-11.0 (optimum, 7.0-8.0) and 0-3.0% (w/v, optimum, 0%) NaCl. Based on 16S rRNA gene sequences, strain JXJ CY 38 T shows high similarities to Nocardioides furvisabuli JCM 13813 T (99.0%) and Nocardioides alpinus JCM 18960 T (98.7%), and less than 98.2% similarities to other members of the genus. The major cellular fatty acids (> 10.0%) were identified as iso-C16:0 (23.6%), C18:1ω9c (18.2%) and C17:1ω8c (16.4%), while the predominant menaquinone was found to be MK-8 (H4). The diagnostic diamino acids in the cell wall peptidoglycan were identified as aspartic acid, glutamic acid, glycine and alanine, with mannose, ribose and arabinose as whole cell sugars. The polar lipids were found to be diphosphatidylglycerol, phosphatidylglycerol, a phospholipid, phosphatidylcholine and an unidentified lipid. The DNA G + C content was determined to be 71.3%. The digital DNA-DNA hybridization and average nucleotide identity values between strain JXJ CY 38 T and the type strains N. furvisabuli JCM 13813 T and N. alpinus JCM 18960 T were 49.4% and 37.7%, and 92.0% and 83.4%, respectively. On the basis of the above taxonomic data and differences in physiological characteristics from the closely related type strains, strain JXJ CY 38 T was determined to represent a novel species of genus Nocardioides, for which the name Nocardioides lacusdianchii sp. nov. is proposed. The type strain is JXJ CY 38 T (= KCTC 49381 T = CGMCC 4.7665 T). Strain JXJ CY 38 T apparently exhibits complex effects on the interactions between MAF and other attached bacteria, including the promotion or inhibition of the growth of MAF and bacteria, and the synthesis and release of microcystins by MAF.


Assuntos
Microcystis , DNA Bacteriano/genética , Microcystis/genética , Nocardioides , Filogenia , RNA Ribossômico 16S/genética
6.
Biotechnol Lett ; 43(4): 909-918, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33449253

RESUMO

OBJECTIVES: To reveal the potential mechanism and key determinants that contributed to the improved pectinase activity in Aspergillus niger mutant EIMU2, which was previously obtained by UV-mutagenesis from the wild-type A. niger EIM-6. RESULTS: Proteomic analysis for Aspergillus niger EIMU2 by two-dimensional electrophoresis demonstrated that mutant EIMU2 harbored a multiple enzyme system for the degradation of pectin, mainly constituting by main-chain-cleaving enzymes polygalacturonase, pectate lyase, pectinesterase, and some accessory enzymes rhamnogalacturonan lyase and arabinofuranosidase. Further quantitatively differential proteomic analysis revealed that the quantities of four proteins, pectinesterase, rhamnogalacturonan lyase A, DNA-directed RNA polymerase A, and a hypothetical protein in strain EIMU2 were much higher than those in EIM-6. PCR amplification, sequencing and alignment analysis of genes for the two main members of pectin-degrading enzymes, pectate lyase and polygalacturonase showed that their sequences were completely consistent in A. niger EIM-6 and mutant EIMU2. CONCLUSIONS: The result demonstrated that the improved pectinase activity by UV-mutagenesis in A. niger EIMU2 was probably contributed to the up-regulated expression of rhamnogalacturonan lyase, or pectinesterase, which resulted in the optimization of synergy amongst different components of pectin-degrading enzymes.


Assuntos
Aspergillus niger/enzimologia , Poligalacturonase/metabolismo , Polissacarídeo-Liases/metabolismo , Proteômica/métodos , Aspergillus niger/genética , Aspergillus niger/efeitos da radiação , Fermentação , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica , Mutação , Poligalacturonase/genética , Polissacarídeo-Liases/genética , Análise de Sequência de DNA , Raios Ultravioleta/efeitos adversos , Regulação para Cima
7.
Microorganisms ; 8(2)2020 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-31991727

RESUMO

Microorganisms that colonize the plant rhizosphere can contribute to plant health, growth and productivity. Although the importance of the rhizosphere microbiome is known, we know little about the underlying mechanisms that drive microbiome assembly and composition. In this study, the variation, assembly and composition of rhizobacterial communities in 11 tomato cultivars, combined with one cultivar in seven different sources of soil and growing substrate, were systematically investigated. The tomato rhizosphere microbiota was dominated by bacteria from the phyla Proteobacteria, Bacteroidetes, and Acidobacteria, mainly comprising Rhizobiales, Xanthomonadales, Burkholderiales, Nitrosomonadales, Myxococcales, Sphingobacteriales, Cytophagales and Acidobacteria subgroups. The bacterial community in the rhizosphere microbiota of the samples in the cultivar experiment mostly overlapped with that of tomato cultivar MG, which was grown in five natural field soils, DM, JX, HQ, QS and XC. The results supported the hypothesis that tomato harbors largely conserved communities and compositions of rhizosphere microbiota that remains consistent in different cultivars of tomato and even in tomato cultivar grown in five natural field soils. However, significant differences in OTU richness (p < 0.0001) and bacterial diversity (p = 0.0014 < 0.01) were observed among the 7 different sources of soil and growing substrate. Two artificial commercial nutrient soils, HF and CF, resulted in a distinct tomato rhizosphere microbiota in terms of assembly and core community compared with that observed in natural field soils. PERMANOVA of beta diversity based on the combined data from the cultivar and soil experiments demonstrated that soil (growing substrate) and plant genotype (cultivar) had significant impacts on the rhizosphere microbial communities of tomato plants (soil, F = 22.29, R2 = 0.7399, p < 0.001; cultivar, F = 2.04, R2 = 0.3223, p = 0.008). Of these two factors, soil explained a larger proportion of the compositional variance in the tomato rhizosphere microbiota. The results demonstrated that the assembly process of rhizosphere bacterial communities was collectively influenced by soil, including the available bacterial sources and biochemical properties of the rhizosphere soils, and plant genotype.

8.
Microbiologyopen ; 8(6): e00762, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30565881

RESUMO

Rhizobacteria play an important role in bridging the soil and plant microbiomes and improving the health and growth of plants. In this study, the bacterial community structures and compositions of rhizosphere microbiomes associated with six plant species, representing two orders and three families of wild plants grown in the same field, were evaluated. The six plant species examined harbored a core and similar bacterial communities of the rhizosphere microbiome, which was dominated by members of Rhizobiales, Sphingomonadales, Burkholderiales, and Xanthomonadales of Proteobacteria, Subgroup 4 of Acidobacteria, and Sphingobacteriales of Bacteroidetes. Plant species had a significant effect on the microbial composition and Operational Taxonomic Unit (OTU) abundance of the rhizosphere microbiome. Statistical analysis indicated a significant differential OTU richness (Chao1, p < 0.05) and bacterial diversity (Shannon index, p < 0.0001) of the rhizosphere microbiome at the plant species, genus, or families levels. The paralleled samples from the same plant species in the PCoA and hierarchical cluster analysis demonstrated a clear tendency to group together, although the samples were not strictly separated according to their taxonomic divergence at the family or order level. The CAP analysis revealed a great proportion (44.85%) of the variations on bacterial communities could be attributed to the plant species. The results demonstrated that largely conserved and taxonomically narrow bacterial communities of the rhizosphere microbiome existed around the plant root. The bacterial communities and diversity of the rhizosphere microbiome were significantly related to the plant taxa, at least at the species levels.


Assuntos
Bactérias/isolamento & purificação , Microbiota , Plantas/microbiologia , Bactérias/classificação , Bactérias/genética , Filogenia , Raízes de Plantas/classificação , Raízes de Plantas/microbiologia , Plantas/classificação , Rizosfera , Microbiologia do Solo
9.
Appl Microbiol Biotechnol ; 102(9): 4143-4157, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29520598

RESUMO

The intestinal tract, which harbours tremendous numbers of bacteria, plays a pivotal role in the digestion and absorption of nutrients. Here, high-throughput sequencing technology was used to determine the community composition and complexity of the intestinal microbiota in cultivated European eels during three stages of their lifecycle, after which the metabolic potentials of their intestinal microbial communities were assessed. The results demonstrated that European eel intestinal microbiota were dominated by bacteria in the phyla Proteobacteria and Fusobacteria. Statistical analyses revealed that the three cultured European eel life stages (elver, yellow eel, and silver eel) shared core microbiota dominated by Aeromonas. Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt) predictions of metagenome function revealed that the European eel intestinal microbiota might play significant roles in host nutrient metabolism. Biolog AN MicroPlate™ analysis and extracellular enzyme assays of culturable intestinal bacteria showed that the intestinal microbiota have a marked advantage in the metabolism of starch, which is the main carbohydrate component in European eel formulated feed. Understanding the ecology and functions of the intestinal microbiota during different developmental stages will help us improve the effects of fish-based bacteria on the composition and metabolic capacity of nutrients in European eels.


Assuntos
Anguilla/microbiologia , Bactérias/classificação , Bactérias/metabolismo , Microbioma Gastrointestinal , Animais , Bactérias/genética , Biodiversidade , Intestinos/microbiologia , Metagenoma/genética , Filogenia
10.
Antonie Van Leeuwenhoek ; 110(3): 387-397, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28000056

RESUMO

Pseudomonas sp., which occupy a variety of ecological niches, have been widely studied for their versatile metabolic capacity to promote plant growth, suppress microbial pathogens, and induce systemic resistance in plants. In this study, a Pseudomonas sp. strain p21, which was isolated from tomato root endophytes, was identified as having antagonism against Aspergillus niger. Further analysis showed that this strain had the ability to biosynthesise siderophores and was less effective in inhibiting the growth of A. niger with the supplementation of Fe3+ in the agar medium. Genomic sequencing and the secondary metabolite cluster analysis demonstrated that Pseudomonas sp. p21 harboured 2 pyoverdine biosynthetic gene clusters, which encode compounds with predicted core structures and two variable tetra-peptide or eleven-peptide chains. The results indicated that siderophore-mediated competition for iron might be an important mechanism in Pseudomonas suppression of the fungal pathogen A. niger and in microbe-pathogen-plant interactions.


Assuntos
Endófitos/classificação , Endófitos/genética , Pseudomonas/classificação , Pseudomonas/genética , Solanum lycopersicum/microbiologia , Antibiose/genética , Aspergillus niger/fisiologia , Endófitos/isolamento & purificação , Endófitos/metabolismo , Genômica , Interações Hospedeiro-Patógeno , Oligopeptídeos/biossíntese , Oligopeptídeos/química , Oligopeptídeos/genética , Doenças das Plantas/microbiologia , Raízes de Plantas/microbiologia , Pseudomonas/isolamento & purificação , Pseudomonas/metabolismo , RNA Ribossômico 16S/genética , Sideróforos/biossíntese , Sideróforos/farmacologia
11.
Sci Rep ; 6: 34959, 2016 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-27762328

RESUMO

Nuclear receptors (NRs) are a diverse class of transcription factors, which are involved in regulating a large number of physiological events in metazoans. However, the function of NRs is poorly understood in plant-parasitic nematodes. Here, members of the NR1J+K group of NRs in nematodes, including the free-living and plant parasites, were examined and phylogenetically analyzed. We found that the number of members of the NR1J+K group in plant-parasitic nematodes was less than that in the free-living nematodes, suggesting this reduction of NR1J+K group members in plant parasites maybe arose during the separation of the free-living and intermediately plant parasitic nematodes (Bursaphelenchus xylophilus). Interestingly, the DNA-binding domain (DBD) and ligand-binding domain (LBD) of NR1J+K members were separated into two gene locations in the plant parasites. Knockdown of Meloidogyne incognita WBMinc13296, the ortholog of Caenorhabditis elegans nhr-48 DBD, reduced infectivity, delayed development, and decreased reproductivity. J2 of M. incognita subjected to silencing of WBMinc13295, the orthologs of B. xylophilus nhr-48 LBD, exhibited developmental lag within the host and reduced reproductivity. This study provides new insights into the function of NRs and suggests that NRs are potential targets for developing effective strategies for biological control of plant-parasitic nematodes.


Assuntos
Proteínas de Helminto/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Tylenchoidea/patogenicidade , Animais , Movimento Celular , Biologia Computacional , Feminino , Técnicas de Silenciamento de Genes , Proteínas de Helminto/genética , Funções Verossimilhança , Masculino , Filogenia , Raízes de Plantas/parasitologia , Plantas/parasitologia , Proteoma , RNA de Cadeia Dupla/genética , Receptores Citoplasmáticos e Nucleares/genética , Temperatura , Tylenchoidea/metabolismo , Virulência
12.
Genome Announc ; 4(3)2016 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-27284146

RESUMO

Hafnia alvei bta3_1, a strain with antibacterial properties, was isolated from honey bee gut and cultured under aerobic and anaerobic conditions. To explore the potential genetic bases of its antibacterial and possible pathogenic properties, the complete genome of this organism was sequenced and analyzed.

13.
Sci Rep ; 5: 17087, 2015 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-26603211

RESUMO

Endophytes are known to play important roles in plant's health and productivity. In this study, we investigated the root microbiome of tomato in association with infection by root knot nematodes. Our objectives were to observe the effects and response of the bacterial endophytes before nematode attacks and to reveal the functional attributes of microbes in plant health and nematode pathogenesis. Community analysis of root-associated microbiomes in healthy and nematode-infected tomatoes indicated that nematode infections were associated with variation and differentiation of the endophyte and rhizosphere bacterial populations in plant roots. The community of the resident endophytes in tomato root was significantly affected by nemato-pathogenesis. Remarkably, some bacterial groups in the nematode feeding structure, the root gall, were specifically enriched, suggesting an association with nematode pathogenesis. Function-based metagenomic analysis indicated that the enriched bacterial populations in root gall harbored abundant genes related to degradation of plant polysaccharides, carbohydrate and protein metabolism, and biological nitrogen fixation. Our data indicated that some of the previously assumed beneficial endophytes or bacterial associates with nematode might be involved in nematode infections of the tomato roots.


Assuntos
Endófitos/genética , Endófitos/metabolismo , Metagenômica , Solanum lycopersicum/microbiologia , Tylenchoidea/patogenicidade , Animais , Metabolismo dos Carboidratos/fisiologia , Solanum lycopersicum/genética , Solanum lycopersicum/parasitologia , Microbiota , Nitrogênio/metabolismo , Proteínas de Plantas/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/microbiologia , Raízes de Plantas/parasitologia , Tumores de Planta/genética , Tumores de Planta/microbiologia , Polissacarídeos/metabolismo , RNA Ribossômico 16S/química , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/metabolismo , Rizosfera , Análise de Sequência de DNA , Tylenchoidea/genética
14.
J Basic Microbiol ; 55(8): 950-60, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25809195

RESUMO

The root knot nematode (RKN), Meloidogyne incognita, belongs to the most damaging plant pathogens worldwide, and is able to infect almost all cultivated plants, like tomato. Recent research supports the hypothesis that bacteria often associated with plant-parasitic nematodes, function as nematode parasites, symbionts, or commensal organisms etc. In this study, we explored the bacterial consortia associated with M. incognita at different developmental stages, including egg mass, adult female and second-stage juvenile using the pyrosequencing approach. The results showed that Proteobacteria, with a proportion of 71-84%, is the most abundant phylum associated with M. incognita in infected tomato roots, followed by Actinobacteria, Bacteroidetes, Firmicutes etc. Egg mass, female and second-stage juvenile of M. incognita harbored a core microbiome with minor difference in communities and diversities. Several bacteria genera identified in M. incognita are recognized cellulosic microorganisms, pathogenic bacteria, nitrogen-fixing bacteria and antagonists to M. incognita. Some genera previously identified in other plant-parasitic nematodes were also found in tomato RKNs. The potential biological control microorganisms, including the known bacterial pathogens and nematode antagonists, such as Actinomycetes and Pseudomonas, showed the largest diversity and proportion in egg mass, and dramatically decreased in second-stage juvenile and female of M. incognita. This is the first comprehensive report of bacterial flora associated with the RKN identified by pyrosequencing-based analysis. The results provide valuable information for understanding nematode-microbiota interactions and may be helpful in the development of novel nematode-control strategies.


Assuntos
Bactérias/isolamento & purificação , Estágios do Ciclo de Vida , Consórcios Microbianos , Raízes de Plantas/parasitologia , Tylenchoidea/crescimento & desenvolvimento , Tylenchoidea/microbiologia , Animais , Bactérias/classificação , Bactérias/genética , Biodiversidade , Feminino , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Solanum lycopersicum/parasitologia , Óvulo/microbiologia , Doenças das Plantas/parasitologia , Proteobactérias/genética , Proteobactérias/isolamento & purificação
15.
J Clin Microbiol ; 53(4): 1399-402, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25653408

RESUMO

We explored the use of matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) for identification of Fusobacterium nucleatum subspecies. MALDI-TOF MS spectra of five F. nucleatum subspecies (animalis, fusiforme, nucleatum, polymorphum, and vincentii) were analyzed and divided into four distinct clusters, including subsp. animalis, nucleatum, polymorphum, and fusiforme/vincentii. MALDI-TOF MS with the modified SARAMIS database further correctly identified 28 of 34 F. nucleatum clinical isolates to the subspecies level.


Assuntos
Técnicas de Tipagem Bacteriana , Fusobacterium nucleatum/classificação , Fusobacterium nucleatum/genética , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Infecções por Fusobacterium/microbiologia , Humanos , RNA Bacteriano/genética , RNA Ribossômico 16S/genética
16.
ScientificWorldJournal ; 2014: 845721, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24574925

RESUMO

The study aims to investigate fungal community structures and dynamic changes in forest soil lignocellulose-degrading process. rRNA gene clone libraries for the samples collected in different stages of lignocellulose degradation process were constructed and analyzed. A total of 26 representative RFLP types were obtained from original soil clone library, including Mucoromycotina (29.5%), unclassified Zygomycetes (33.5%), Ascomycota (32.4%), and Basidiomycota (4.6%). When soil accumulated with natural lignocellulose, 16 RFLP types were identified from 8-day clone library, including Basidiomycota (62.5%), Ascomycota (36.1%), and Fungi incertae sedis (1.4%). After enrichment for 15 days, identified 11 RFLP types were placed in 3 fungal groups: Basidiomycota (86.9%), Ascomycota (11.5%), and Fungi incertae sedis (1.6%). The results showed richer, more diversity and abundance fungal groups in original forest soil. With the degradation of lignocellulose, fungal groups Mucoromycotina and Ascomycota decreased gradually, and wood-rotting fungi Basidiomycota increased and replaced the opportunist fungi to become predominant group. Most of the fungal clones identified in sample were related to the reported lignocellulose-decomposing strains. Understanding of the microbial community structure and dynamic change during natural lignocellulose-degrading process will provide us with an idea and a basis to construct available commercial lignocellulosic enzymes or microbial complex.


Assuntos
Biomassa , Ecossistema , Fungos/metabolismo , Lignina/metabolismo , Características de Residência , Microbiologia do Solo , Fungos/química , Fungos/genética , Lignina/análise , Lignina/genética , Filogenia
17.
Genome Announc ; 1(3)2013 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-23661471

RESUMO

Ralstonia solanacearum strain FQY_4 was isolated from a bacterial wilt nursery, which is used for breeding crops for Ralstonia resistance in China. Here, we report the complete genome sequence of FQY_4 and its comparison with other published R. solanacearum genomes, especially with the strains GMI1000 and Y45 in the same group.

18.
Appl Biochem Biotechnol ; 170(2): 320-8, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23508862

RESUMO

The aim of this study was to endow an industrial strain of Saccharomyces cerevisiae with the ability to overexpress the xylanase by constructing a homology-driven integration vector. The total mRNA from a xylanase-producing strain of Aspergillus niger IME-216 was extracted and used as the template for the production of endo-ß-1,4-xylanase cDNA by reverse transcription. The fusion fragment containing the phosphoglycerate kinase promoter, α-factor signal peptide, xylanase gene encoding the mature peptide, and CYC1 terminator was first generated by overlap extension polymerase chain reaction. Then, the vector pUPX was constructed by inserting the fusion fragment into the S. cerevisiae plasmid pUG6. Then, A 2.2-kb rDNA sequence was further cloned and attached to the SalI-digested pUPX to obtain the integration plasmid pUPXR. The pUPXR was linearized by KpnI, transformed into the industrial strain S. cerevisiae YS2 using the lithium acetate method and integrated into the S. cerevisiae chromosome. The maximum yield of the recombinant xylanase produced by the engineered S. cerevisiae strain YS2_2 was 74.8 U per microliter, which was about 1.5-fold higher than the original 50 U per microliter by Aspergillus niger IME-216 strain under the flask culture at 28 °C for 72 h. The findings of our study can be used for further development of industrial S. cerevisiae strain for producing interested enzymes, or improving the achievement of metabolism, for example, simultaneous fermentation of glucose and xylose to producing bioethanol.


Assuntos
Aspergillus niger/enzimologia , Endo-1,4-beta-Xilanases/metabolismo , Proteínas Fúngicas/metabolismo , Saccharomyces cerevisiae/metabolismo , Aspergillus niger/genética , Clonagem Molecular , Endo-1,4-beta-Xilanases/genética , Ativação Enzimática , Fermentação , Proteínas Fúngicas/genética , Regulação Enzimológica da Expressão Gênica , Regulação Fúngica da Expressão Gênica , Genes Fúngicos , Vetores Genéticos , Organismos Geneticamente Modificados/genética , Organismos Geneticamente Modificados/metabolismo , RNA Fúngico/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/genética , Transformação Genética
19.
mBio ; 3(6)2012 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-23111871

RESUMO

Antibiotic treatment can impact nontarget microbes, enriching the pool of resistance genes available to pathogens and altering community profiles of microbes beneficial to hosts. The gut microbiota of adult honeybees, a distinctive community dominated by eight bacterial species, provides an opportunity to examine evolutionary responses to long-term treatment with a single antibiotic. For decades, American beekeepers have routinely treated colonies with oxytetracycline for control of larval pathogens. Using a functional metagenomic screen of bacteria from Maryland bees, we detected a high incidence of tetracycline/oxytetracycline resistance. This resistance is attributable to known resistance loci for which nucleotide sequences and flanking mobility genes were nearly identical to those from human pathogens and from bacteria associated with farm animals. Surveys using diagnostic PCR and sequencing revealed that gut bacteria of honeybees from diverse localities in the United States harbor eight tetracycline resistance loci, including efflux pump genes (tetB, tetC, tetD, tetH, tetL, and tetY) and ribosome protection genes (tetM and tetW), often at high frequencies. Isolates of gut bacteria from Connecticut bees display high levels of tetracycline resistance. Resistance genes were ubiquitous in American samples, though rare in colonies unexposed for 25 years. In contrast, only three resistance loci, at low frequencies, occurred in samples from countries not using antibiotics in beekeeping and samples from wild bumblebees. Thus, long-term antibiotic treatment has caused the bee gut microbiota to accumulate resistance genes, drawn from a widespread pool of highly mobile loci characterized from pathogens and agricultural sites. We found that 50 years of using antibiotics in beekeeping in the United States has resulted in extensive tetracycline resistance in the gut microbiota. These bacteria, which form a distinctive community present in healthy honeybees worldwide, may function in protecting bees from disease and in providing nutrition. In countries that do not use antibiotics in beekeeping, bee gut bacteria contained far fewer resistance genes. The tetracycline resistance that we observed in American samples reflects the capture of mobile resistance genes closely related to those known from human pathogens and agricultural sites. Thus, long-term treatment to control a specific pathogen resulted in the accumulation of a stockpile of resistance capabilities in the microbiota of a healthy gut. This stockpile can, in turn, provide a source of resistance genes for pathogens themselves. The use of novel antibiotics in beekeeping may disrupt bee health, adding to the threats faced by these pollinators.


Assuntos
Antibacterianos/administração & dosagem , Bactérias/efeitos dos fármacos , Bactérias/genética , Abelhas/microbiologia , Resistência a Tetraciclina , Tetraciclinas/administração & dosagem , Animais , DNA Bacteriano/genética , Trato Gastrointestinal/microbiologia , Genes Bacterianos , Reação em Cadeia da Polimerase , Seleção Genética , Estados Unidos
20.
Mar Biotechnol (NY) ; 13(1): 12-21, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20358240

RESUMO

A gene encoding delta5 fatty acid desaturase (fad5) was cloned from marine fungus Thraustochytrium sp. FJN-10, a species capable of producing docosahexaenoic acid. The open reading frame of fad5 was 1,320 bp and encoded a protein comprising 439 amino acids. Expression of the fad5 in Saccharomyces cerevisiae INVSC1 revealed that FAD5 is able to introduce a double bond at position 5 of the dihomo-γ-linolenic acid (20:3 Δ(8,11,14)), resulting in arachidonic acid (20:4 Δ(5,8,11,14)) with a conversion rate of 56.40% which is the highest among engineering yeasts reported so far. The 5'-upstream region of fad5 was cloned by LA-PCR and analyzed. Phylogenetic analysis of this sequence with the 5'-upstream region of other delta5 desaturases showed that the 5'-upstream region of fad5 from Thraustochytrium share the smallest evolution distance with human and rhesus. Computational analysis of the nucleotide sequence of the 5'-upstream region of fad5 has revealed several basic transcriptional elements including five TATA boxes, three CCAAT boxes, 12 GC boxes, and several putative target-binding sites for transcription factors such as HSF, CAP, and ADR1. Preliminary functional analysis of this promoter in S. cerevisiae shows that the 5'-upstream region of fad5 could drive the expression of green fluorescent protein.


Assuntos
Clonagem Molecular/métodos , Ácidos Graxos Dessaturases/genética , Proteínas Fúngicas/genética , Fungos/genética , Estramenópilas/genética , Sequência de Aminoácidos , Sequência de Bases , Ácidos Graxos Dessaturases/metabolismo , Ácidos Graxos Insaturados/metabolismo , Proteínas Fúngicas/metabolismo , Fungos/enzimologia , Fungos/isolamento & purificação , Dados de Sequência Molecular , Fases de Leitura , Estramenópilas/enzimologia , Estramenópilas/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...