Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 15(23)2022 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-36499802

RESUMO

High-speed, high-efficiency and high-power density are the main development trends of high-performance motors in the future. At present, the design accuracy of traditional electric machines is already high enough; however, for the future demand of high performance and utilization in special environments (such as aviation and aerospace fields), more thorough research of materials' performance under multi-physics field (MPF) conditions is still needed. In this paper, a test system that combined temperature, stress and electromagnetic fields along with other fields, at the same time, is built. It can accurately simulate the actual complex working conditions of the motor and explore the dynamic characteristics of non-grain oriented (NGO) silicon steel. The rationality of this method is verified by checking the test result of the prototype, and the calculation accuracy of the motor model is improved.

2.
Materials (Basel) ; 15(23)2022 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-36499998

RESUMO

Currently, high-speed motors usually adopt rotor structures with surface-mounted permanent magnets, but their sheaths will deteriorate performance significantly. The motor with interior rotor structure has the advantages of high power density and efficiency. At the same time, high silicon steel has low loss and high mechanical strength, which is extremely suitable for high-speed motor rotor core material. Therefore, in this paper, the feasibility of using high silicon steel as the material of an interior rotor high-speed motor is investigated. Firstly, the magnetic properties of high silicon steel under multi-physical fields were tested and analyzed in comparison with conventional silicon steel. Meanwhile, an interior rotor structure of high-speed motor using high silicon steel as the rotor core is proposed, and its electromagnetic, mechanical, and thermal properties are simulated and evaluated. Then, the experimental comparative analysis was carried out in terms of the slotting process of the core, and the machining of the high silicon steel rotor core was successfully completed. Finally, the feasibility of the research idea was verified by the above theoretical analysis and experimental characterization.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...