Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Anal Chem ; 96(25): 10451-10458, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38860917

RESUMO

Rapid and sensitive RNA detection is of great value in diverse areas, ranging from biomedical research to clinical diagnostics. Existing methods for RNA detection often rely on reverse transcription (RT) and DNA amplification or involve a time-consuming procedure and poor sensitivity. Herein, we proposed a CRISPR/Cas12a-enabled amplification-free assay for rapid, specific, and sensitive RNA diagnostics. This assay, which we termed T7/G4-CRISPR, involved the use of a T7-powered nucleic acid circuit to convert a single RNA target into numerous DNA activators via toehold-mediated strand displacement reaction and T7 exonuclease-mediated target recycling amplification, followed by activating Cas12a trans-cleavage of the linker strands inhibiting split G-Quadruplex (G4) assembly, thereby inducing fluorescence attenuation proportion to the input RNA target. We first performed step-by-step validation of the entire assay process and optimized the reaction parameters. Using the optimal conditions, T7/G4-CRISPR was capable of detecting as low as 3.6 pM target RNA, obtaining ∼100-fold improvement in sensitivity compared with the most direct Cas12a assays. Meanwhile, its excellent specificity could discriminate single nucleotide variants adjacent to the toehold region and allow species-specific pathogen identification. Furthermore, we applied it for analyzing bacterial 16S rRNA in 40 clinical urine samples, exhibiting a sensitivity of 90% and a specificity of 100% when validated by RT-quantitative PCR. Therefore, we envision that T7/G4-CRISPR will serve as a promising RNA sensing approach to expand the toolbox of CRISPR-based diagnostics.


Assuntos
Sistemas CRISPR-Cas , Quadruplex G , Sistemas CRISPR-Cas/genética , Humanos , Exodesoxirribonucleases/metabolismo , Exodesoxirribonucleases/química , RNA/análise , RNA/metabolismo , Técnicas de Amplificação de Ácido Nucleico , Proteínas Associadas a CRISPR/metabolismo , Proteínas de Bactérias , Endodesoxirribonucleases
2.
PeerJ ; 11: e16161, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37780376

RESUMO

The Gram-negative non-motile Klebsiella pneuomoniae is currently a major cause of hospital-acquired (HA) and community-acquired (CA) infections, leading to great public health concern globally, while rapid identification and accurate tracing of the pathogenic bacterium is essential in facilitating monitoring and controlling of K. pneumoniae outbreak and dissemination. Multi-locus sequence typing (MLST) is a commonly used typing approach with low cost that is able to distinguish bacterial isolates based on the allelic profiles of several housekeeping genes, despite low resolution and labor intensity of the method. Core-genome MLST scheme (cgMLST) is recently proposed to sub-type and monitor outbreaks of bacterial strains with high resolution and reliability, which uses hundreds or thousands of genes conserved in all or most members of the species. However, the method is complex and requires whole genome sequencing of bacterial strains with high costs. Therefore, it is urgently needed to develop novel methods with high resolution and low cost for bacterial typing. Surface enhanced Raman spectroscopy (SERS) is a rapid, sensitive and cheap method for bacterial identification. Previous studies confirmed that classification and prediction of bacterial strains via SERS spectral analysis correlated well with MLST typing results. However, there is currently no similar comparative analysis in K. pneumoniae strains. In this pilot study, 16 K. pneumoniae strains with different sequencing typings (STs) were selected and a phylogenetic tree was constructed based on core genome analysis. SERS spectra (N = 45/each strain) were generated for all the K. pneumoniae strains, which were then comparatively classified and predicted via six representative machine learning (ML) algorithms. According to the results, SERS technique coupled with the ML algorithm support vector machine (SVM) could achieve the highest accuracy (5-Fold Cross Validation = 100%) in terms of differentiating and predicting all the K. pneumoniae strains that were consistent to corresponding MLSTs. In sum, we show in this pilot study that the SERS-SVM based method is able to accurately predict K. pneumoniae MLST types, which has the application potential in clinical settings for tracing dissemination and controlling outbreak of K. pneumoniae in hospitals and communities with low costs and high rapidity.


Assuntos
Infecções Comunitárias Adquiridas , Infecções por Klebsiella , Humanos , Klebsiella pneumoniae/genética , Tipagem de Sequências Multilocus , Filogenia , Reprodutibilidade dos Testes , Projetos Piloto , Infecções por Klebsiella/diagnóstico , Genoma Bacteriano/genética , Infecções Comunitárias Adquiridas/genética
3.
Int Med Case Rep J ; 16: 617-622, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37789830

RESUMO

Scrub typhus is a vector-borne infectious disease caused by Orientia tsutsugamushi. Accurate and timely diagnosis at the early infection stage could save the patients' lives. Traditional technologies were limited to rapidly and successfully detecting Orientia tsutsugamushi due to poor specificity, especially in the condition of atypical symptoms. The technology of Metagenomic next-generation sequencing (mNGS) is amenable to finding the real pathogen because it holds potential as a diagnostic platform for unbiased pathogen identification and precision medicine. Herein, we reported two clinical case reports relative to the Orientia tsutsugamushi infection diagnosed by mNGS. We hope these two cases will improve clinical diagnosis.

4.
Microbiol Spectr ; 10(6): e0191922, 2022 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-36453896

RESUMO

Klebsiella pneumoniae often causes life-threatening infections in patients globally. Despite its notability, little is known about potential nosocomial outbreak and spread of K. pneumoniae among pediatric patients in low- and middle-income countries. Ninety-eight K. pneumoniae strains isolated from pediatric patients in a large general hospital in China between February 2018 and May 2019 were subjected to nanopore and Illumina sequencing and genomic analysis to elucidate transmission and genetic diversity. The temporal distribution patterns of K. pneumoniae revealed a cluster of sequence type 11 (ST11) strains comprising two clades. Most inferred transmissions were of clade 1, which could be traced to a common ancestor dating to mid-2017. An infant in the coronary care unit played a central role, potentially seeding transmission clusters in other wards. Major genomic changes during the outbreak included chromosomal mutations associated with virulence and gains and losses of plasmids encoding resistance. In summary, we report a nosocomial outbreak among pediatric patients caused by clonal dissemination of KPC-2-producing ST11 K. pneumoniae. Our findings highlight the value of whole-genome sequencing during outbreak investigations and illustrate that transmission chains can be identified during hospital stays. IMPORTANCE We report a nosocomial outbreak among pediatric patients caused by clonal dissemination of blaKPC-2-carrying ST11 K. pneumoniae. Strains of various sequence types coexist in the complex hospital environment; the quick emergence and spread of ST11 strains were mainly due to the plasmid-mediated acquisition of resistance genes. The spread of hospital infection was highly associated with several specific wards, suggesting the importance of genomic surveillance on wards at high risk of infection.


Assuntos
Enterobacteriáceas Resistentes a Carbapenêmicos , Infecção Hospitalar , Infecções por Klebsiella , Humanos , Criança , Klebsiella pneumoniae , beta-Lactamases/genética , População do Leste Asiático , Plasmídeos , Enterobacteriáceas Resistentes a Carbapenêmicos/genética , Infecção Hospitalar/epidemiologia , Infecções por Klebsiella/epidemiologia , Carbapenêmicos , Antibacterianos/farmacologia , Testes de Sensibilidade Microbiana , Proteínas de Bactérias/genética
5.
Infect Drug Resist ; 15: 3417-3425, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35800120

RESUMO

Background: Pneumonia produced by coinfection with Pneumocystis jirovecii (PJ) and cytomegalovirus (CMV) in infants and young children without timely diagnosis and treatment is often fatal due to the limitations of traditional tests. More accurate and rapid diagnostic methods for multiple infections are urgently needed. Case Presentation: Here, we report a case of a 2-month-old boy with pneumonia caused by Pneumocystis jirovecii (PJ) and cytomegalovirus (CMV) without HIV infection. Chest computed tomography (CT) showed massive exudative consolidation in both lungs. Microscopic examination of stained sputum and smear specimens and bacterial and fungal culture tests were all negative, and CMV nucleic acid and antibody tests were positive. After a period of antiviral and anti-infective therapy, pulmonary inflammation was not relieved. Subsequently, sputum and venous blood samples were analysed by metagenomic next-generation sequencing (mNGS), and the sequences of PJ and CMV were acquired. The patient was finally diagnosed with pneumonia caused by PJ and CMV coinfection. Anti-fungal combined with anti-viral therapy was given immediately. mNGS re-examination of bronchoalveolar lavage fluid (BALF) also revealed the same primary pathogen. Therapy was stopped due to the request of the patient's guardian. Hence, the child was discharged from the hospital and eventually died. Conclusion: This case emphasizes the combined use of mNGS and traditional tests in the clinical diagnosis of mixed lung infections in infants without HIV infection. mNGS is a new adjunctive diagnostic method that can rapidly discriminate multiple causes of pneumonia.

6.
Front Microbiol ; 12: 723697, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34603249

RESUMO

Background: This study analyzed the antimicrobial resistance phenotypes and mechanisms of quinolone, cephalosporins, and colistin resistance in nontyphoidal Salmonella from patients with diarrhea in Jiangsu, China. Methods: A total of 741 nontyphoidal Salmonella isolates were collected from hospitals in major cities of Jiangsu Province, China between 2016 and 2017. Their susceptibility to commonly used antibiotics was evaluated by broth micro-dilution and sequencing analysis of resistance genes screened by a PCR method. For mcr-1 positive isolates, genetic relationship study was carried out by pulsed-field gel electrophoresis and multiloci sequence typing analysis. The transferability of these plasmids was measured with conjugation experiments and the genetic locations of mcr-1 were analyzed by pulsed-field gel electrophoresis profiles of S1-digested genomic DNA and subsequent Southern blot hybridization. Results: Among 741 nontyphoidal Salmonella isolates, the most common serotypes identified were S. Typhimurium (n=257, 34.7%) and S. Enteritidis (n=127, 17.1%), and the isolates showed 21.7, 20.6, and 5.0% resistance to cephalosporins, ciprofloxacin, and colistin, respectively. Among the 335 nalidixic acid-resistant Salmonella, 213 (63.6%) and 45 (13.4%) had at least one mutation in gyrA and parC. Among the plasmid-borne resistance, qnrS1 (85; 41.9%) and aac(6')-Ib-cr4 (75; 36.9%) were the most common quinolone resistance (PMQR) genes, while bla CTX-M-14 (n=35) and bla CTX-M-55 (n=46) were found to be dominant extended-spectrum beta-lactamase (ESBL) genes in nontyphoidal Salmonella. In addition, eight mcr-1-harboring strains were detected since 2016 and they were predominate in children under the age of 7years. Conjugation assays showed the donor Salmonella strain has functional and transferable colistin resistance and Southern blot hybridization revealed that mcr-1 was located in a high molecular weight plasmid. Conclusion: In nontyphoidal Salmonella, there is a rapidly increasing trend of colistin resistance and this is the first report of patients harboring mcr-1-positive Salmonella with a new ST type ST155 and new serotype S. Sinstorf. These findings demonstrate the necessity for cautious use and the continuous monitoring of colistin in clinical applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...