Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Pharmacol ; 13: 876512, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35721146

RESUMO

The coexistence of anti-glomerular basement membrane (GBM) disease, idiopathic membranous nephropathy (IMN), and IgA nephropathy in one patient is a very rare case, which has not yet been reported. Whether the three diseases are correlated and the underlying mechanism remain unknown. Herein, we report a 48-year-old female patient that was admitted because of proteinuria and abnormal renal function, which was diagnosed as anti-GBM disease, idiopathic membranous nephropathy, and IgA nephropathy by renal biopsy. The patient received treatment including high-dose methylprednisolone pulse therapy, plasma exchange, and intravenous infusion of both cyclophosphamide (CTX) and rituximab. In the follow-up, the titer of the anti-GBM antibody gradually decreased, renal function was restored, and urinary protein was reduced, without significant adverse effects.

2.
Front Med (Lausanne) ; 9: 813329, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35372448

RESUMO

Background: Membranous nephropathy (MN) is a common pathological phenotype for adult nephrotic syndrome (NS). The occurrence of MN is increasing across China, but diagnostic methods for MN still rely on kidney biopsy and PLA2R and THSD7A detection in plasma and kidney tissue, and there has been no new biomarker for MN discovered since 2014. Immune infiltration status in MN patients suffers from the dearth of associated studies. In the present study, we aimed to find new bio-markers for MN and evaluate the role of immune cells infiltration in MN pathology. Methods: We downloaded MN expression profile from the Gene Expression Omnibus database and used R-project to screen differentially expressed genes (DEGs) and performed functional correlation analysis. Least absolute shrinkage and selection operator (LASSO) logistic regression and Radom Forest algorithms were used to screen and verify the bio-markers of MN. Finally, CIBERSORT was used to evaluate the infiltration of immune cells in MN tissues. Results: A total of 463 DEGs were screened from the MN tissue in this study. ETS2 was identified as bio-marker for MN. The CIBERSORT results showed that there were statistical differences in monocytes, plasma cells, regulatory T cells, and memory B cells. In addition, ETS2 was positively related to monocytes, M1 phase macrophages, and neutrophils and negatively correlated to plasma cells, CD4+ T memory cells, M2 macrophages, CD8+ T cells, memory B cells, and resting mast cells. Conclusion: (1) Machine learning algorithms reveals Ets2 as a novel target for membranous nephropathy patients. (2) Immune infiltration plays an important part in membranous nephropathy. (3) Ets2 expression is related to immune cells infiltration.

3.
Front Pharmacol ; 12: 630820, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33776773

RESUMO

Background: This study aimed to explore the effects of sodium-glucose co-transporter 2 (SGLT2) on hemoglobin levels in patients with type 2 diabetes mellitus (T2DM) and chronic kidney disease. Methods: PubMed, EMBASE, the Cochrane Central Register of Controlled Trials, the China National Knowledge Infrastructure database, Wanfang Digital Periodicals Database (WFDP) and the Chinese Biological and Medical database (CBM) were searched for randomized trials of SGLT2 inhibitors in patients with T2DM and chronic kidney disease up to July 25, 2020. A total of four studies that included 19,259 patients were identified. Results: Compared to control patients, SGLT2 inhibitors were shown to increase hemoglobin levels in patients with T2DM and chronic kidney disease (standard mean difference = 0.70, 95% CI, 0.59-0.82, p < 0.0001). Conclusion: SGLT2 inhibitors may bring additional benefits to patients with T2DM and chronic kidney disease.

4.
J Transl Int Med ; 9(4): 307-317, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-35136729

RESUMO

BACKGROUND AND OBJECTIVES: Vascular stenosis and angiogenesis are the major causes of short expectancy of arteriovenous fistula (AVF). Increased expression of vascular endothelial growth factor-A (VEGF-A) has been suggested to play an important role in the pathophysiologic process. Anti-VEGF has been proved to be effective on anti-angiogenesis and applied in clinical practice, but its effect on anti-stenosis remains to be verified before it could be applied to prevent stenosis of AVF. This study was aimed to evaluate the effect of local anti-VEGF therapy to prevent the formation of stenosis in the outflow vein in AVF and its mechanism. METHODS: Bioinformatics of VEGF-A and its downstream-regulated molecules from the STRING PPI database were analyzed in this study. The biopsy samples from outflow veins of AVF in patients and C57BL/6 mouse models were analyzed to examine the mechanisms of pathologic vascular stenosis associated with VEGF pathways and their potential therapeutic targets. RESULTS: We found that the reduction of VEGF-A could downregulate downstream molecules and subsequently reduce the intimal hyperplasia and abnormal vascular remodeling by analyzing the STRING PPI database. Venous wall thickening, intimal neointima formation, and apoptosis of vascular endothelial cells in the proliferative outflow vein of the AVF were significantly more obvious, and upregulation of expression of VEGF was observed in dysfunctional AVF in patients. In mouse models, the expression of VEGF, Ephrin receptor B4 (EphB4), matrix metalloproteinase (MMP)2, MMP9, tissue inhibitor of metalloproteinase (TIMP)1, TIMP2, and caspase 3 in the control-shRNA surgical group was significantly higher than in the sham group (P < 0.05), and all of these indicators were significantly lower in lentiviral transfection group and Avastin group than in control-shRNA surgical group (P < 0.05) on the 14th day after AVF operation. CONCLUSION: VEGF expression is significantly increased in vascular endothelial cells in stenosed or occluded outflow veins of dysfunctional AVF. Local injection of Avastin into the adventitia of the proximal outflow vein in autologous AVF procedure has an excellent potential to prevent the subsequent local stenosis of the proximal outflow vein.

5.
Front Physiol ; 11: 1092, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33192538

RESUMO

Unraveling the complex regulatory pathways that mediate the effects of phosphate on vascular smooth muscle cells (VSMCs) may provide novel targets and therapies to limit the destructive effects of vascular calcification (VC) in patients with chronic kidney disease (CKD). Our previous studies have highlighted several signaling networks associated with VSMC autophagy, but the underlying mechanisms remain poorly understood. Thereafter, the current study was performed to characterize the functional relevance of O-linked N-acetylglucosamine (GlcNAc) transferase (OGT) in high phosphate-induced VC in CKD settings. We generated VC models in 5/6 nephrectomized rats in vivo and VSMC calcification models in vitro. Artificial modulation of OGT (knockdown and overexpression) was performed to explore the role of OGT in VSMC autophagy and VC in thoracic aorta, and in vivo experiments were used to substantiate in vitro findings. Mechanistically, co-immunoprecipitation (Co-IP) assay was performed to examine interaction between OGT and kelch like ECH associated protein 1 (KEAP1), and in vivo ubiquitination assay was performed to examine ubiquitination extent of nuclear factor erythroid 2-related factor 2 (NRF2). OGT was highly expressed in high phosphate-induced 5/6 nephrectomized rats and VSMCs. OGT silencing was shown to suppress high phosphate-induced calcification of VSMCs. OGT enhances KEAP1 glycosylation and thereby results in degradation and ubiquitination of NRF2, concurrently inhibiting VSMC autophagy to promote VSMC calcification in 5/6 nephrectomized rats. OGT inhibits VSMC autophagy through the KEAP1/NRF2 axis and thus accelerates high phosphate-induced VC in CKD.

6.
BMC Nephrol ; 21(1): 316, 2020 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-32736534

RESUMO

BACKGROUND: It is controversial for the effect and safety between cinacalcet and other treatments in treating secondary hyperparathyroidism for patients with chronic kidney disease (CKD) or end-stage renal disease (ESRD). METHODS: Embase, PubMed, and Cochrane Library were searched through Feb 2017. 21 randomized controlled trials were included. We calculated the pooled mean difference (MD), relative risk (RR) and corresponding 95% confidence interval (CI). RESULT: Patients received calcimimetic agents had significantly decreased serum parathyroid hormone (MD = - 259.24 pg/mL, 95% CI: - 336.23 to - 182.25), calcium (MD = - 0.92 mg/dL, 95% CI: - 0.98 to - 0.85) and calcium phosphorus product (MD = - 5.97 mg2/dL2, 95% CI: - 9.77 to - 2.16) concentration compared with control treatment. However, the differences in cardiovascular mortality and all-cause mortality between calcimimetics agents and control group were not statistically significant. The incidence of nausea (RR = 2.13, 95% CI: 1.62 to 2.79), vomiting (RR = 1.99, 95% CI: 1.78 to 2.23) and hypocalcemia (RR = 10.10, 95% CI: 7.60 to 13.43) in CKD patients with calcimimetics agents was significantly higher than that with control treatment. CONCLUSION: Cinacalcet improved the biochemical parameters in CKD patients, but did not improve all-cause mortality and cardiovascular mortality. Moreover, cinacalcet can cause some adverse events.


Assuntos
Hormônios e Agentes Reguladores de Cálcio/uso terapêutico , Cinacalcete/uso terapêutico , Hiperparatireoidismo Secundário/tratamento farmacológico , Falência Renal Crônica/complicações , Humanos , Hiperparatireoidismo Secundário/etiologia , Ensaios Clínicos Controlados Aleatórios como Assunto , Insuficiência Renal Crônica/complicações
7.
Life Sci ; 261: 118121, 2020 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-32693242

RESUMO

AIMS: Pathological vascular calcification (VC), a major risk factor for cardiovascular mortality, is a highly prevalent finding in patients with chronic kidney disease (CKD). We previously analyzed several pathways protecting against high phosphate-induced VC through induction of autophagy. Here, we explored how O-GlcNAc transferase (OGT) affected high phosphate-induced VC of CKD though mediation of autophagy. MAIN METHODS: In the rats with CKD induced by 5/6 nephrectomy, the VC process was accelerated by a high phosphate diet. The calcification of vascular smooth muscle cells (VSMCs) was induced by high phosphate treatment. We then experimentally tested the effect of OGT on high phosphate-induced VC by conducting loss-of-function experiments. Co-immunoprecipitation and GST pull-down assays were performed to evaluate interaction between OGT and Yes-associated protein (YAP). In mechanistic studies of this pathway, we measured autophagy protein expression and autophagosome formation, as well as calcium deposition and calcium content in VSMCs and in vivo in response to altered expression of OGT and/or YAP. KEY FINDINGS: OGT was up-regulated in high phosphate-induced VC models in vitro and in vivo. High phosphate-induced calcification in the rat aorta and VSMCs were suppressed by OGT silencing. OGT promoted the glycosylation of YAP to enhance its stability. Importantly, over-expressing YAP reduced autophagy and OGT expedited high phosphate-induced VC by inhibiting autophagy through upregulation of YAP. SIGNIFICANCE: OGT silencing downregulated YAP to induce autophagy activation, thus suppressing high phosphate-induced VC, which highlighted a promising preventive target against high phosphate-induced VC in CKD.


Assuntos
Proteínas Reguladoras de Apoptose/genética , Autofagia/genética , N-Acetilglucosaminiltransferases/genética , Insuficiência Renal Crônica/fisiopatologia , Calcificação Vascular/genética , Animais , Regulação para Baixo , Técnicas de Silenciamento de Genes , Masculino , Miócitos de Músculo Liso/metabolismo , Fosfatos/administração & dosagem , Ratos , Ratos Sprague-Dawley , Insuficiência Renal Crônica/genética , Calcificação Vascular/patologia , Proteínas de Sinalização YAP
8.
Mol Med Rep ; 22(3): 2132-2140, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32705186

RESUMO

Previous studies have explored the treatment of lupus nephritis with Bailing capsules; however, due to limited sample sizes and inconsistent results across these studies, no definitive conclusions have been drawn. Thus, the present study aimed to provide evidence for the effectiveness of Bailing capsules in the treatment of lupus nephritis. To obtain relevant clinical studies (published before 20 July 2019), PubMed, Embase, Cochrane Library, China National Knowledge Infrastructure, WanFang and the Chinese Biomedical Literature Database were searched, and relevant studies concerning the use of Bailing capsules for treating lupus nephritis were selected. The extracted data were general characteristics such as the first author, publication year, study year, follow­up time, age, sex, course of the disease and a number of outcome indicators. These included systemic lupus erythematosus disease activity index (SLEDAI) score, serum albumin (Alb), 24­h urinary protein, serum creatinine, anti­ds­DNAIgM, complement component 3 (C3), and the number of effective treatments and complications. Meta­analysis was performed using R­3.12 software. Publication bias was assessed using Egger's test. A total of 14 studies comprising 1,301 participants were combined for analysis in the present study. The results demonstrated that with the exception of anti­ds­DNAIgM and complement C3, other indicators, such as SLEDAI score, Alb, 24­h urinary protein, serum creatinine, and the number of effective treatments and complications) in the Bailing capsule treatment group were improved compared with those in the control group. The results of the present meta­analysis suggested that Bailing capsules may be effective in the treatment of lupus nephritis.


Assuntos
Medicamentos de Ervas Chinesas/uso terapêutico , Leflunomida/uso terapêutico , Lúpus Eritematoso Sistêmico/tratamento farmacológico , Prednisona/uso terapêutico , Complemento C3/metabolismo , Creatinina/sangue , Quimioterapia Combinada , Humanos , Lúpus Eritematoso Sistêmico/sangue , Albumina Sérica/metabolismo , Resultado do Tratamento
9.
J Cell Physiol ; 234(8): 14306-14318, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30701530

RESUMO

Pathological calcification represents an event that consequently leads to a distinct elevation in the morbidity and mortality of patients with chronic kidney disease (CKD) in addition to strengthening its correlation with hyperphosphatemia. Epigenomic regulation by specific microRNAs (miRNAs) is reported to be involved in ectopic calcification. However, the finer molecular mechanisms governing this event remain unclear. Hence, this study aimed to identify the potential miRNAs involved in vascular calcification (VC) development and progression. Initially, mitochondrial membrane potential (MMP), autophagy-specific markers (LC3II/LC3I and Beclin1) and phenotype-specific markers of osteoblasts (runt-related transcription factor 2 and Msx2) were measured to evaluate autophagy and VC in ß-glycerophosphate-induced vascular smooth muscle cells (VSMCs) with either miR-30b restoration or miR-30b knockdown performed in vitro. The VC in vivo was represented by calcified nodule formation in the aorta of the rats undergoing 5/6 nephrectomy followed by a 1.2% phosphorus diet using Alizarin Red staining. SOX9 was verified as the target of miR-30b according to luciferase activity determination. Restoration of miR-30b was revealed to markedly diminish the expression of SOX9 while acting to inhibit activation of the mTOR signaling pathway. Knockdown of miR-30b reduced MMP and autophagy, elevated VC, and suppressed the presence of rapamycin (an inhibitor of the mTOR signaling pathway). In addition, upregulated expression of miR-30b attenuated VC in vivo. Taken together, the key findings of this study identified the inhibitory role of miR-30b in VC, presenting an enhanced understanding of miRNA as a therapeutic target to curtail progressive VC in hyperphosphatemia of CKD.


Assuntos
Autofagia/genética , MicroRNAs/genética , Insuficiência Renal Crônica/genética , Calcificação Vascular/genética , Animais , Aorta/metabolismo , Proteína Beclina-1/genética , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Epigenômica , Regulação da Expressão Gênica/genética , Glicerofosfatos , Proteínas de Homeodomínio/genética , Humanos , Potencial da Membrana Mitocondrial/genética , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Osteoblastos/metabolismo , Ratos , Insuficiência Renal Crônica/metabolismo , Insuficiência Renal Crônica/patologia , Fatores de Transcrição SOX9/genética , Transdução de Sinais/genética , Serina-Treonina Quinases TOR/genética , Calcificação Vascular/metabolismo , Calcificação Vascular/patologia
10.
J Cell Physiol ; 234(4): 3469-3477, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30461014

RESUMO

In the last 10 years, the prevalence, significance, and regulatory mechanisms of vascular calcification (VC) have gained increasing recognition. The aim of this study is to explore the action of WNT8b in the development of phosphate-induced VC through its effect on vascular smooth muscle cells (VSMCs) in vitro by inactivating the Wnt-ß-catenin signaling pathway. To explore the effect of WNT8b on the Wnt-ß-catenin signaling pathway and VC in vitro, ß-glycerophosphate (GP)-induced T/G HA-VSMCs were treated with small interfering RNA against WNT8b (Si-WNT8b), Wnt-ß-catenin signaling pathway activator (LiCl) and both, respectively. Reverse transcription quantitative polymerase chain reaction and western blot analysis were used to determine the messenger RNA and protein levels of WNT8b, α-smooth muscle actin (α-SMA), calcification-associated molecules, and molecules related to the Wnt signaling pathway. The TOP/FOP-Flash reporter assay was performed to detect the transcription activity mediated by ß-catenin. Si-WNT8b reduced calcium deposition and the activity of alkaline phosphatase (ALP), increased the α-SMA level, and decreased bone morphogenetic protein 2, Pit1, MSX2, and Runt-related transcription factor 2 levels, whereas stimulation of LiCl worsened ß-GP-induced calcium deposition, increased the activity of ALP, and reduced the α-SMA expression level. Si-WNT8b reduced the levels of WNT8b, frizzled-4, ß-catenin, phospho-GSK-3ß (p-GSK-3ß), and cyclin-D, whereas it increased the levels of p-ß-catenin and GSK-3ß, indicating that si-WNT8b could alter the Wnt-ß-catenin signaling pathway and thus hamper the VC in T/G HA-VSMC, which was further demonstrated by the TOP/FOP-Flash assay and detection of the ß-catenin expression level in the nucleus. Altogether, we conclude that WNT8b knockdown terminates phosphate-induced VC in VSMCs by inhibiting the Wnt-ß-catenin signaling pathway.


Assuntos
Cálcio/metabolismo , Glicerofosfatos/toxicidade , Músculo Liso Vascular/efeitos dos fármacos , Miócitos de Músculo Liso/efeitos dos fármacos , Calcificação Vascular/prevenção & controle , Proteínas Wnt/metabolismo , Via de Sinalização Wnt , Actinas/genética , Actinas/metabolismo , Fosfatase Alcalina/genética , Fosfatase Alcalina/metabolismo , Células Cultivadas , Técnicas de Silenciamento de Genes , Humanos , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/patologia , Interferência de RNA , Fatores de Tempo , Calcificação Vascular/genética , Calcificação Vascular/metabolismo , Calcificação Vascular/patologia , Proteínas Wnt/genética
11.
Cell Physiol Biochem ; 42(2): 530-536, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28578340

RESUMO

BACKGROUND/AIMS: Autophagy is an evolutionarily conserved mechanism that affects the survival and functions of vascular smooth muscle cells (VSMCs). We explored the role of microRNAs (miRNAs) in regulating autophagy in VSMCs exposed to high phosphorus (Pi) levels. METHODS: VSMCs were isolated from the thoracic aorta of rats and were cultured primarily. Real-time PCR was used to measure the mRNA expression of indicated genes. Western blotting was performed to detect the protein expression of autophagy-related markers. RESULTS: We found that treatment with high Pi levels (1 and 3 mM) activated LC3II expression and promoted autophagic flux in VSMCs. Conversely, treatment with an autophagy inhibitor decreased LC3II expression. Pi stimulation dysregulated the expression of several miRNAs such as miR-18a, miR-21, miR-23a, miR-30b, and miR-31a. However, miR-30b overexpression decreased Pi-induced expression of autophagy-related marker genes such as BECN1, ATG5, and LC3b, whereas miR-30b downregulation increased Pi-induced expression of these genes. In addition, we found that miR-30b directly targeted BECN1. CONCLUSIONS: These data suggest that miR-30b plays an important role in the regulation of high Pi level-induced autophagy in VSMCs by targeting BECN1.


Assuntos
Aorta Torácica/metabolismo , Autofagia/efeitos dos fármacos , Proteína Beclina-1/genética , MicroRNAs/genética , Proteínas Associadas aos Microtúbulos/biossíntese , Animais , Aorta Torácica/efeitos dos fármacos , Aorta Torácica/patologia , Autofagia/genética , Proteína Beclina-1/biossíntese , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , MicroRNAs/biossíntese , Proteínas Associadas aos Microtúbulos/genética , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/metabolismo , Fósforo/farmacologia , Ratos
12.
J Cell Biochem ; 118(12): 4708-4715, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28513870

RESUMO

This study investigates the effect of nuclear factor erythroid 2-related factor 2-antioxidant response element (Nrf2-ARE) signaling pathway in vascular calcification (VC) via inducing Autophagy in renal vascular smooth muscle cells (VSMCs). VSMCs were assigned into six experimental groups: the normal control, high phosphorus, si-negative control (si-NC), Nrf2-siRNA, over-expressed Nrf2, and negative control (NC) groups. RT-PCR was applied to detect the mRNA expressions of the desired Nrf2-ARE signaling pathway-related genes (Nrf2, NQO-1, HO-1, γ-GCS). The protein products of these genes: apoptosis-related genes (LC3I and LC3II), osteogenic marker proetins (Runt-related transcription factor 2) Runx2 and BMP2 were all detected by Western blotting. Autophagosomes in VSMCs were observed under a transmission electron microscope. We discovered an increased calcium ion concentration and upregulated Runx2, BMP2, Nrf2, HO-1, γ-GCS, NQO-1, and LC3II/LC3I expressions in the high phosphorous, si-NC and Nrf2-siRNA, and NC groups, compared with the normal control group. Compared to the high phosphorus and si-NC groups, higher levels of Runx2 and BMP2 but decreased Nrf2, HO-1, γ-GCS, NQO-1, and LC3II/LC3I expressions were detected in the Nrf2-siRNA group. The high phosphorus, si-NC and over-expressed Nrf2 experimental groups all had increased Nrf2, NQO-1, HO-1, γ-GCS, and LC3II/LC3I expressions as well as high numbers of autophagosomes compared with the normal control group. Finally, we detected a lower amount of autophagosomes presence and Nrf2, NQO-1, HO-1 γ-GCS, and LC3II/LC3 protein expression of Nrf2-siRNA group than that of the high phosphorus and si-NC groups. Activation of Nrf2-ARE signaling pathway may prevent hyperphosphatemia-induced VC by inducing autophagy in VSMCs. J. Cell. Biochem. 118: 4708-4715, 2017. © 2017 Wiley Periodicals, Inc.


Assuntos
Autofagia , Hiperfosfatemia/metabolismo , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Elementos de Resposta , Transdução de Sinais , Calcificação Vascular/metabolismo , Animais , Hiperfosfatemia/patologia , Hiperfosfatemia/prevenção & controle , Rim/irrigação sanguínea , Rim/metabolismo , Rim/patologia , Masculino , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/patologia , Ratos , Ratos Sprague-Dawley , Calcificação Vascular/patologia , Calcificação Vascular/prevenção & controle
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...