Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 945: 173923, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38880144

RESUMO

Rhizobium inoculation has been widely applied to alleviate heavy metal (HM) stress in legumes grown in contaminated soils, but it has generated inconsistent results with regard to HM accumulation in plant tissues. Here, we conducted a meta-analysis to assess the performance of Rhizobium inoculation for regulating HM in legumes and reveal the general influencing factors and processes. The meta-analysis showed that Rhizobium inoculation in legumes primarily increased the total HM uptake by stimulating plant biomass growth rather than HM phytoavailability. Inoculation had no significant effect on the average shoot HM concentration (p > 0.05); however, it significantly increased root HM uptake by 61 % and root HM concentration by 7 % (p < 0.05), indicating safe agricultural production while facilitating HM phytostabilisation. Inoculation decreased shoot HM concentrations and increased root HM uptake in Vicia, Medicago and Glycine, whereas it increased shoot HM concentrations in Sulla, Cicer and Vigna. The effects of inoculation on shoot biomass were suppressed by nitrogen fertiliser and native microorganisms, and the effect on shoot HM concentration was enhanced by high soil pH, organic matter content, and phosphorous content. Inoculation-boosted shoot nutrient concentration was positively correlated with increased shoot biomass, whereas the changes in pH and organic matter content were insufficient to significantly affect accumulation outcomes. Nitrogen content changes in the soil were positively correlated with changes in root HM concentration and uptake, whereas nitrogen translocation changes in the tissues were positively correlated with changes in HM translocation. Phosphorus solubilisation could improve HM phytoavailability at the expense of slight biomass promotion. These results suggest that the diverse growth-promoting characteristics of Rhizobia influence the trade-off between biomass-HM phytoavailability and HM translocation, impacting HM accumulation outcomes. Our findings can assist in optimising the utilisation of legume-Rhizobium systems in HM-contaminated soils.


Assuntos
Fabaceae , Metais Pesados , Rhizobium , Poluentes do Solo , Fabaceae/metabolismo , Poluentes do Solo/metabolismo , Metais Pesados/metabolismo , Rhizobium/fisiologia , Biodegradação Ambiental , Solo/química , Raízes de Plantas/microbiologia , Raízes de Plantas/metabolismo
2.
J Environ Manage ; 364: 121311, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38875977

RESUMO

Soil salinization and sodification, the primary causes of land degradation and desertification in arid and semi-arid regions, demand effective monitoring for sustainable land management. This study explores the utility of partial least square (PLS) latent variables (LVs) derived from visible and near-infrared (Vis-NIR) spectroscopy, combined with remote sensing (RS) and auxiliary variables, to predict electrical conductivity (EC) and sodium absorption ratio (SAR) in northern Xinjiang, China. Using 90 soil samples from the Karamay district, machine learning models (Random Forest, Support Vector Regression, Cubist) were tested in four scenarios. Modeling results showed that RS and Land use alone were unreliable predictors, but the addition of topographic attributes significantly improved the prediction accuracy for both EC and SAR. The incorporation of PLS LVs derived from Vis-NIR spectroscopy led to the highest performance by the Random Forest model for EC (CCC = 0.83, R2 = 0.80, nRMSE = 0.48, RPD = 2.12) and SAR (CCC = 0.78, R2 = 0.74, nRMSE = 0.58, RPD = 2.25). The variable importance analysis identified PLS LVs, certain topographic attributes (e.g., valley depth, elevation, channel network base level, diffuse insolation), and specific RS data (i.e., polarization index of VV + VH) as the most influential predictors in the study area. This study affirms the efficiency of Vis-NIR data for digital soil mapping, offering a cost-effective solution. In conclusion, the integration of proximal soil sensing techniques and highly relevant topographic attributes with the RF model has the potential to yield a reliable spatial model for mapping soil EC and SAR. This integrated approach allows for the delineation of hazardous zones, which in turn enables the consideration of best management practices and contributes to the reduction of the risk of degradation in salt-affected and sodicity-affected soils.


Assuntos
Salinidade , Solo , Solo/química , China , Monitoramento Ambiental/métodos , Tecnologia de Sensoriamento Remoto , Análise dos Mínimos Quadrados
3.
Appl Environ Microbiol ; 90(4): e0235523, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38535171

RESUMO

Halophyte-based remediation emerges as a novel strategy for ameliorating saline soils, offering a sustainable alternative to conventional leaching methods. While bioremediation is recognized for its ability to energize soil fertility and structure, the complex interplays among plant traits, soil functions, and soil microbial diversity remain greatly unknown. Here, we conducted a 5-year field experiment involving the continuous cultivation of the annual halophyte Suaeda salsa in saline soils to explore soil microbial diversity and their relationships with plant traits and soil functions. Our findings demonstrate that a decline in soil salinity corresponded with increases in the biomass and seed yield of S. salsa, which sustained a consistent seed oil content of approximately 22% across various salinity levels. Significantly, prolonged cultivation of halophytes substantially augmented soil microbial diversity, particularly from the third year of cultivation. Moreover, we identified positive associations between soil multifunctionality, seed yield, and taxonomic richness within a pivotal microbial network module. Soils enriched with taxa from this module showed enhanced multifunctionality and greater seed yields, correlating with the presence of functional genes implicated in nitrogen fixation and nitrification. Genomic analysis suggests that these taxa have elevated gene copy numbers of crucial functional genes related to nutrient cycling. Overall, our study emphasizes that the continuous cultivation of S. salsa enhances soil microbial diversity and recovers soil multifunctionality, expanding the understanding of plant-soil-microbe feedback in bioremediation.IMPORTANCEThe restoration of saline soils utilizing euhalophytes offers a viable alternative to conventional irrigation techniques for salt abatement and soil quality enhancement. The ongoing cultivation of the annual Suaeda salsa and its associated plant traits, soil microbial diversity, and functionalities are, however, largely underexplored. Our investigation sheds light on these dynamics, revealing that cultivation of S. salsa sustains robust plant productivity while fostering soil microbial diversity and multifunctionality. Notably, the links between enhanced soil multifunctionality, increased seed yield, and network-dependent taxa were found, emphasizing the importance of key microbial taxa linked with functional genes vital to nitrogen fixation and nitrification. These findings introduce a novel understanding of the role of soil microbes in bioremediation and advance our knowledge of the ecological processes that are vital for the rehabilitation of saline environments.


Assuntos
Chenopodiaceae , Solo , Solo/química , Solução Salina , Cloreto de Sódio , Nitrificação , Plantas Tolerantes a Sal
4.
Plants (Basel) ; 13(5)2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38475566

RESUMO

Succulence is a key trait involved in the response of Suaeda salsa to salt stress. However, few studies have investigated the effects of the interaction between salt and drought stress on S. salsa growth and succulence. In this study, the morphology and physiology of S. salsa were examined under different salt ions (Na+, Ca2+, Mg2+, Cl-, and SO42-) and simulated drought conditions using different polyethylene glycol concentrations (PEG; 0%, 5%, 10%, and 15%). The results demonstrate that Na+ and Ca2+ significantly increased leaf succulence by increasing leaf water content and enlarging epidermal cell size compared to Mg2+, Cl-, and SO42-. Under drought (PEG) stress, with an increase in drought stress, the biomass, degree of leaf succulence, and water content of S. salsa decreased significantly in the non-salt treatment. However, with salt treatment, the results indicated that Na+ and Ca2+ could reduce water stress due to drought by stimulating the succulence of S. salsa. In addition, Na+ and Ca2+ promoted the activity of superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD), which could reduce oxidative stress. In conclusion, Na+ and Ca2+ are the main factors promoting succulence and can effectively alleviate drought stress in S. salsa.

5.
Sci Rep ; 14(1): 450, 2024 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-38172293

RESUMO

Biochar has shown potential as a sorbent for reducing Cd levels in water. Euhalophytes, which thrive in saline-alkali soils containing high concentrations of metal ions and anions, present an intriguing opportunity for producing biochar with inherent metal adsorption properties. This study focused on biochar derived from the euhalophyte Salicornia europaea and aimed to investigate its Cd adsorption capacity through adsorption kinetics and isotherm experiments. The results demonstrated that S. europaea biochar exhibited a high specific surface area, substantial base cation content, and a low negative surface charge, making it a highly effective adsorbent for Cd. The adsorption data fit well with the Langmuir isotherm model, revealing a maximum adsorption capacity of 108.54 mg g-1 at 25 °C. The adsorption process involved both surface adsorption and intraparticle diffusion. The Cd adsorption mechanism on the biochar encompassed precipitation, ion exchange, functional group complexation, and cation-π interactions. Notably, the precipitation of Cd2+ with CO32- in the biochar played a dominant role, accounting for 73.7% of the overall removal mechanism. These findings underscore the potential of euhalophytes such as S. europaea as a promising solution for remediating Cd contamination in aquatic environments.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Cádmio/análise , Adsorção , Purificação da Água/métodos , Água , Carvão Vegetal , Cátions , Cinética , Poluentes Químicos da Água/análise
6.
Environ Sci Technol ; 57(48): 19782-19792, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-37966898

RESUMO

Dissolved organic matter (DOM) is involved in numerous biogeochemical processes, and understanding the ecological succession of DOM is crucial for predicting its response to farming (e.g., fertilization) practices. Although plentiful studies have examined how fertilization practice affects the content of soil DOM, it remains unknown how long-term fertilization drives the succession of soil DOM over temporal scales. Here, we investigated the succession of DOM in paddy rice rhizosphere soils subjected to different long-term fertilization treatments (CK: no fertilization; NPK: inorganic fertilization; OM: organic fertilization) along with plant growth. Our results demonstrated that long-term fertilization significantly promoted the molecular chemodiversity of DOM, but it weakened the correlation between DOM composition and plant development. Time-decay analysis indicated that the DOM composition had a shorter halving time under CK treatment (94.7 days), compared to NPK (337.4 days) and OM (223.8 days) treatments, reflecting a lower molecular turnover rate of DOM under fertilization. Moreover, plant development significantly affected the assembly process of DOM only under CK, not under NPK and OM treatments. Taken together, our results demonstrated that long-term fertilization, especially inorganic fertilization, greatly weakens the ecological succession of DOM in the plant rhizosphere, which has a profound implication for understanding the complex plant-DOM interactions.


Assuntos
Oryza , Solo , Solo/química , Rizosfera , Matéria Orgânica Dissolvida , Fertilização , Fertilizantes/análise
7.
Science ; 380(6650): 1114, 2023 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-37319221
8.
Plants (Basel) ; 12(9)2023 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-37176923

RESUMO

Suaeda aralocaspica, which is an annual halophyte, grows in saline deserts in Central Asia with potential use in saline soil reclamation and salt tolerance breeding. Studying its genetic diversity is critical for effective conservation and breeding programs. In this study, we aimed to develop a set of polymorphic microsatellite markers to analyze the genetic diversity of S. aralocaspica. We identified 177,805 SSRs from the S. aralocaspica genome, with an average length of 19.49 bp, which were present at a density of 393.37 SSR/Mb. Trinucleotide repeats dominated (75.74%) different types of motifs, and the main motif was CAA/TTG (44.25%). We successfully developed 38 SSR markers that exhibited substantial polymorphism, displaying an average of 6.18 alleles with accompanying average polymorphism information content (PIC) value of 0.516. The markers were used to evaluate the genetic diversity of 52 individuals collected from three populations of S. aralocaspica in Xinjiang, China. The results showed that the genetic diversity was moderate to high, with a mean expected heterozygosity (He) of 0.614, a mean Shannon's information index (I) of 1.23, and a mean genetic differentiation index (Fst) of 0.263. The SSR markers developed in this study provide a valuable resource for future genetic studies and breeding programs of S. aralocaspica, and even other species in Suaeda.

9.
Environ Sci Pollut Res Int ; 30(24): 66113-66124, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37097582

RESUMO

Glycophyte biomass - derived biochars have proven to be effective in the amelioration of acidic soil. However, there is scarce information on the characteristics and soil amelioration effects of halophyte-derived biochars. In this study, a typical halophyte Salicornia europaea, which is mainly distributed in the saline soils and salt-lake shores of China, and a glycophyte Zea mays, which is widely planted in the north of China, were selected to produce biochars with a pyrolysis process at 500 °C for 2 h. S. europaea-derived and Z. mays-derived biochars were characterized in elemental content, pores, surface area, and surface functional groups, and then by using a pot experiment their potential utilizable value as acidic soil conditioner was evaluated. The results showed that compared with Z. mays-derived biochar, S. europaea-derived biochar displayed higher pH, ash contents, base cations (K+, Ca2+, Na+, and Mg2+) contents and exhibited more larger surface area and pore volume than Z. mays-derived biochar. Both biochars had abundant oxygen-containing functional groups. Upon treating the acidic soil, the pH of acidic soil was increased by 0.98, 2.76, and 3.36 units after the addition of 1%, 2%, and 4% S. europaea-derived biochar, while it was increased only by 0.10, 0.22, and 0.56 units at 1%, 2%, and 4% Z. mays-derived biochar. High alkalinity in S. europaea-derived biochar was the main reason for the increase of pH value and base cations in acidic soil. Thus, application of halophyte biochar such as S. europaea-derived biochar is an alternative method for the amelioration of acidic soils.


Assuntos
Chenopodiaceae , Poluentes do Solo , Solo/química , Plantas Tolerantes a Sal , Carvão Vegetal/química , Poluentes do Solo/análise
10.
Int J Mol Sci ; 23(24)2022 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-36555131

RESUMO

Nitrogen accelerates salt accumulation in the root zone of an euhalophyte, which might be beneficial for inhibiting the salt damage and interspecific competition for nutrients of non-halophytes in intercropping. However, the variations in the effect of euhalophyte/non-halophyte intercropping with nitrogen supply are poorly understood. Here, we selected the euhalophyte Suaeda salsa (suaeda) and non-halophyte Zea mays L. (maize) as the research objects, setting up three cropping patterns in order to explore the influence of nitrogen application on the intercropping effect in the suaeda/maize intercropping. The results showed that the biomass of maize in the intercropping was significantly lower than that in the monoculture, while for suaeda, it was higher in the intercropping than that in the monoculture. The biomass of maize under NO3--N treatment performed significantly higher than that under no nitrogen treatment. Moreover, under suitable NO3--N treatment, more salt ions (Na+, K+) gathered around the roots of suaeda, which weakened the salt damage on maize growth. In the intercropping, the effect of NO3--N on the maize growth was enhanced when compared with the non-significant effect of NH4+-N, but a positive effect of NH4+-N on suaeda growth was found. Therefore, the disadvantage of maize growth in the intercropping suaeda/maize might be caused by interspecific competition to a certain extent, providing an effective means for the improvement of saline-alkali land by phytoremediation.


Assuntos
Chenopodiaceae , Zea mays , Nitrogênio/análise , Cloreto de Sódio , Cloreto de Sódio na Dieta , Plantas Tolerantes a Sal , Solo , Agricultura/métodos
11.
Front Plant Sci ; 13: 973919, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36330236

RESUMO

Drip irrigation under plastic film mulch is a common agricultural practice used to conserve water. However, compared to traditional flood irrigation with film mulch, this practice limit cotton root development from early flowering stage and may cause premature senescence in cotton. Changes of root will consequently shape the composition and activity of rhizosphere microbial communities, however, the effect of this farming practice on cotton rhizosphere microbiota remains poorly understood. This study investigated rhizosphere bacteria and soil functionality in response to different irrigation practices -including how changes in rhizosphere bacterial diversity alter soil nutrient cycling. Drip irrigation under plastic film mulch was shown to enhance bacterial diversity by lowering the salinity and increasing the soil moisture. However, the reduced root biomass and soluble sugar content of roots decreased potential copiotrophic taxa, such as Bacteroidetes, Firmicutes, and Gamma-proteobacteria, and increased potential oligotrophic taxa, such as Actinobacteria, Acidobacteria, and Armatimonadetes. A core network module was strongly correlated with the functional potential of soil. This module not only contained most of the keystone taxa but also comprised taxa belonging to Planctomycetaceae, Gemmatimonadaceae, Nitrosomonadaceae, and Rhodospirillaceae that were positively associated with functional genes involved in nutrient cycling. Drip irrigation significantly decreased the richness of the core module and reduced the functional potential of soil in the rhizosphere. Overall, this study provides evidence that drip irrigation under plastic film mulch alters the core bacterial network module and suppresses soil nutrient cycling.

12.
Gigascience ; 112022 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-36310248

RESUMO

BACKGROUND: The caper bush Capparis spinosa L., one of the most economically important species of Capparaceae, is a xerophytic shrub that is well adapted to drought and harsh environments. However, genetic studies on this species are limited because of the lack of its reference genome. FINDINGS: We sequenced and assembled the Capparis spinosa var. herbacea (Willd.) genome using data obtained from the combination of PacBio circular consensus sequencing and high-throughput chromosome conformation capture. The final genome assembly was approximately 274.53 Mb (contig N50 length of 9.36 Mb, scaffold N50 of 15.15 Mb), 99.23% of which was assigned to 21 chromosomes. In the whole-genome sequence, tandem repeats accounted for 19.28%, and transposable element sequences accounted for 43.98%. The proportion of tandem repeats in the C. spinosa var. herbacea genome was much higher than the average of 8.55% in plant genomes. A total of 21,577 protein-coding genes were predicted, with 98.82% being functionally annotated. The result of species divergence times showed that C. spinosa var. herbacea and Tarenaya hassleriana separated from a common ancestor 43.31 million years ago. CONCLUSIONS: This study reported a high-quality reference genome assembly and genome features for the Capparaceae family. The assembled C. spinosa var. herbacea genome might provide a system for studying the diversity, speciation, and evolution of this family and serve as an important resource for understanding the mechanism of drought and high-temperature resistance.


Assuntos
Capparaceae , Capparis , Filogenia , Genômica , Genoma de Planta
13.
Plants (Basel) ; 11(7)2022 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-35406933

RESUMO

Nitrogen (N) application might exert a great impact on root (biomass, length) distribution, which possibly contributes to ion and nutrient uptakes. Here, we address the effects of N application on these characteristics to detect how N improves its salt tolerance. Suaeda salsa was subjected to four salt levels (0.5, 1.0, 1.5, and 2.0%) and three N treatments (NO3--N: 0, 0.25, and 0.50 g·kg-1) in soil column experiments. The N applications performed a "dose effect" that significantly enhanced the growth of Suaeda at low salt levels, while negative effects were displayed at high salt levels. Moderate N markedly benefited from Na+ and Cl- uptake, which was approximately 111 mg and 146 mg per plant at a salt level of 1.0%. Exposure to a certain N application significantly enhanced topsoil root length at salt levels of 0.5% and 1.0%, and it was higher by 0.766 m and 1.256 m under N50 treatment than that under N0 treatment, whereas the higher salt levels accelerate subsoil root growth regardless of N treatment. Therefore, its interactive effects on root development and ion uptake were present, which would provide further theoretical basis for improving saline soil amelioration by N application. Regression analysis always showed that topsoil root length generated more positive and significant influences on ion uptake and vegetative growth than total root length. The results suggested that N application is beneficial to salt tolerance by altering root allocation so as to raise its elongation and gather more ions for halophyte in the topsoil.

14.
Plants (Basel) ; 10(11)2021 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-34834724

RESUMO

Water conditions directly affect plant growth and thus modify reproduction allocation. However, little is known about the transgenerational effects of water conditions on xerophytes. The desert annual Atriplex aucheri produces three types of seeds (A: dormant, ebracteate black seeds; B: dormant, bracteolate black seeds; C: non-dormant, bracteolate brown seeds) on a single plant. The aim of this study was to investigate the effects of low/high water treatment (thereafter progeny water treatment) on aboveground biomass, C:N stoichiometry, and offspring seed characteristics of A. aucheri grown from brown seeds whose mother plants were under low/high water treatment (thereafter maternal water treatment). Progeny water only affected shoot dry weight and seed allocation of type A. Under low progeny water treatment, plants from parents with low maternal water treatment had the lowest biomass. Maternal water did not significantly influence the C and N content, however high maternal water increased the C:N ratio. Maternal water treatment did not significantly affect seed number. However, plants under low maternal and progeny water treatments had the lowest weight for type B seeds. When progeny plants were under low water treatment, seed allocation of type A, type B, and total seed allocation of plants under high maternal water were significantly lower than those of plants under low maternal water. These results indicate that water conditions during the maternal generation can dramatically contribute to progeny seed variation, but the transgenerational effects depend on the water conditions of progeny plants.

15.
Front Plant Sci ; 12: 671157, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34220893

RESUMO

On degraded land in arid regions, cultivation of Apocynum species can provide significant environmental benefits by preventing soil erosion and desertification. Furthermore, Apocynum venetum and Apocynum pictum, which are mainly distributed in salt-barren lands in the northwestern region of China, are traditionally used to produce natural fiber and herbal tea. Direct sowing of both species may encounter various abiotic stresses such as drought and salinity. However, these effects on germination remain largely unknown, especially for seeds with different storage periods. The aim of this study was to evaluate the effects of storage period, light condition, temperature regime, drought, and salinity on germination performances of both species. Germination experiment was carried out in November 2017. There were four replicates for each treatment, and each petri dish contained 25 seeds. The results indicated that prolongation of storage period significantly decreased the germination percentage and velocity, especially under abiotic stresses. Light did not affect seed germination of A. venetum and A. pictum under any conditions. Seeds had better germination performance at 10/25 and 15/30°C than those of seeds incubated at any other temperatures. With the increase of polyethylene glycol (PEG) and salinity concentrations, seed germination for both species gradually decreased, especially for seeds stored for 2 years. Low PEG (0-20%) and salinity concentration (0-200 mM) did not significantly affect germination percentage of freshly matured seeds. However, long-time storage significantly decreased drought and salinity tolerance in A. venetum and A. pictum during germination stage. For saline soils in arid and semi-arid regions, freshly matured seeds or 1-year-stored seeds of both Apocynum species are recommended to be sown by using drip-irrigation in spring.

16.
Front Plant Sci ; 12: 677767, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34234797

RESUMO

Halophytes are capable of resisting salinity, and their root system is the part in direct contact with the saline soil environment. The aim of this study was to compare the responses of root morphology and rhizosphere characteristics to salinity between a halophyte, Suaeda salsa (suaeda), and a glycophyte, Beta vulgaris L. (sugar beet). The soil salt content was set to four levels (0.7, 1.2, 1.7, and 2.7%) by NaCl-treated plants. We investigated the soil pH, EC, nutrients and soil, plant ion (Na+, Cl-, K+, and Mg2+) concentration to evaluate the rhizospheric processes, and salt tolerance of suaeda by the root mat method. The highest biomass was in the 1.2% salt level for suaeda and in the 0.7% salt level for sugar beet. The root length and root surface area of suaeda showed similar trends to biomass, but the root diameter decreased by 11.5-17.9% with higher salinity. The Na+, Cl-, and K+ accumulations in the shoot of suaeda displayed higher than that in sugar beet, while the Mg2+ accumulation was lower in suaeda than that in sugar beet. High salinity resulted in increased pH and EC values in the rhizosphere for suaeda, but lower values of these parameters for sugar beet. Under high salinity, the Olsen phosphorus content was 0.50 g·kg-1 and 0.99 g·kg-1 higher in the rhizosphere than in the non-rhizosphere for suaeda and sugar beet. We concluded that the two species [halophyte, Suaeda salsa (suaeda), and a glycophyte, B. vulgaris L. (sugar beet)] showed diverse approaches for nutrient absorption under salinity stress. Suaeda altered its root morphology (smaller root diameter and longer roots) under salt stress to increase the root surface area, while sugar beet activated rhizospheric processes to take up more nutrients.

17.
Ecotoxicol Environ Saf ; 205: 111293, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-32949840

RESUMO

Wastewater from printing and dyeing processes often contains aniline and high salinity, which are hazardous to aquatic species. Glycophytic plants cannot survive under high-salinity conditions, whereas halophytes grow well in such an environment. In this study, we investigated the influence of NaCl on the antioxidant level in Suaeda salsa affected by aniline stress. The seedlings showed various growth toxicity effects under different concentrations of aniline. The results showed that the effect of the aniline was more severe for the root growth compared to that for the shoot growth. Aniline exposure significantly increased the total free radicals and ·OH radicals in the plants. Suaeda salsa exposure to aniline caused oxidative stress by altering the superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD) activity, which resulted in the overproduction of H2O2 and the inducement of lipid peroxidation. Analysis revealed that the malondialdehyde (MDA) content was enhanced after aniline exposure and that the chlorophyll content was significantly decreased. The results showed that aniline induced the production of free radicals and reactive oxygen species (ROS), and changed the antioxidant defense system. This ultimately resulted in oxidative damage in S. salsa; however, it was found that moderate salinity could mitigate the effects. In conclusion, salinity may alleviate the growth inhibition caused by aniline by regulating the antioxidant capacity of S. salsa.


Assuntos
Compostos de Anilina/toxicidade , Antioxidantes/metabolismo , Chenopodiaceae/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Cloreto de Sódio/farmacologia , Poluentes Químicos da Água/toxicidade , Catalase/metabolismo , Chenopodiaceae/enzimologia , Chenopodiaceae/crescimento & desenvolvimento , Clorofila/metabolismo , Espectroscopia de Ressonância de Spin Eletrônica , Peróxido de Hidrogênio/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Malondialdeído/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Salinidade , Plantas Tolerantes a Sal/efeitos dos fármacos , Plantas Tolerantes a Sal/enzimologia , Plantas Tolerantes a Sal/crescimento & desenvolvimento , Plântula/efeitos dos fármacos , Plântula/enzimologia , Plântula/crescimento & desenvolvimento , Superóxido Dismutase/metabolismo
18.
Plant Signal Behav ; 15(11): 1805902, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-32815486

RESUMO

Due to irrigation practices and industrial pollution, large areas of the lands in the world are simultaneously affected by salinity and heavy metal contamination. It has been considered that halophytes have adapted to salinity, and can be used to remediate heavy metal-contaminated saline soils. Suaeda salsa L. (S. salsa) is a high salt-resistance plant, which can efficiently absorb and accumulate salt and toxic metals from saline soils, suggesting that this may be potential plant species that can be used for the restoration of saline soils contaminated with heavy metals. The present brief review sheds light on the characteristics of S. salsa in the uptake and accumulation of high levels of heavy metals. Furthermore, the physiological and molecular mechanisms for heavy metal tolerance were highlighted. The potential values of S. salsa in the remediation of saline soils were also summarized.


Assuntos
Chenopodiaceae/metabolismo , Metais Pesados/metabolismo , Biodegradação Ambiental/efeitos dos fármacos , Chenopodiaceae/efeitos dos fármacos , Metais Pesados/toxicidade , Plantas Tolerantes a Sal
19.
Ecol Evol ; 10(4): 2196-2212, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32128149

RESUMO

Global climate change is one of the most pressing conservation challenges; in particular, changes in precipitation regimes have already substantially influenced terrestrial ecosystems. However, the mechanisms influencing precipitation changes on individual plants and the plant communities in desert grasslands have yet to be fully elucidated. We therefore examine the influence of increased precipitation on plant community compositions in the Gurbantunggut Desert, Xinjiang, northwestern China, from 2005 to 2009. We found that growth of all plant species and the community productivities increased markedly with enhanced water input. Cover of ephemeral synusia also significantly increased due to increased precipitation, implying that the role of the ephemeral community for stabilization of sand dunes was strengthened by increased precipitation. The response of plant community compositions to increased precipitation was primarily reflected as changes in plant density, while increased precipitation did not affect plant species richness and the diversity index. Dominant species drove the response of plant density to increasing precipitation during the five-year study period. However, the relative responses of rare species were stronger than those of the dominant species, thereby potentially driving species turnover with long-term increased precipitation. This finding improved our understanding of how increased precipitation drives the changes in plant community composition in desert grasslands and will help to better predict changes in the community composition of ephemerals under future global climate change scenarios.

20.
Sci Total Environ ; 703: 134650, 2020 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-31731166

RESUMO

Terrestrial ecosystems are composed of above- and belowground community, which have been researched separately for many years even though the two subsystems clearly interact with each other. And it is still less understood how the above- and belowground ecosystems co-response to the changing precipitation in this changing world. To understand the interdependence and co-responses of plant-arbuscular mycorrhizal (AM) fungi symbioses to this facet of climate change, we examined the plant and AM fungal diversity and abundance along both, a transect from east to west of the desert which exhibits an annual precipitation gradient and a topographical transect of a typical sand dune which exhibits a gradient of soil moisture but equal precipitation, in a temperate desert in Central Asia. The results showed that community structure and biomass of plants and AM fungi along both transects were positively correlated and related to either precipitation or soil moisture, strongly support the Habitat Hypothesis. We found a soil moisture threshold between 0.64% and 0.86%, below which the variability of plant coverage, plant species richness, spore density and Shannon-wiener diversity index of both plant and AM fungal communities increased sharply yielding in an average threshold of 0.73% for the stability of plant-AMF symbioses. Our results highlight that increasing precipitation contributes to above- and belowground, and particularly to the overall AM-symbiotic stability in a desert ecosystem. This emphasizes the susceptibility and the importance plant-AMF symbioses for ecosystem stability to climate changes across different scales.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...