Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Integr Plant Biol ; 66(4): 638-641, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38351739

RESUMO

The compact CRISPR/CasΦ2 system provides a complementary genome engineering tool for efficient gene editing including cytosine and adenosine base editing in wheat and rye with high specificity, efficient use of the protospacer-adjacent motif TTN, and an alternative base-editing window.


Assuntos
Edição de Genes , Triticum , Triticum/genética , Sistemas CRISPR-Cas/genética , Secale/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas
2.
Nanomaterials (Basel) ; 13(17)2023 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-37686947

RESUMO

The design and fabrication of low-cost catalysts for highly efficient oxygen reduction are of paramount importance for various renewable energy-related technologies, such as fuel cells and metal-air batteries. Herein, we report the synthesis of Fe3N nanoparticle-encapsulated N-doped carbon nanotubes on the surface of a flexible biomass-derived carbon cloth (Fe3N@CNTs/CC) via a simple one-step carbonization process. Taking advantage of its unique structure, Fe3N@CNTs/CC was employed as a self-standing electrocatalyst for oxygen reduction reaction (ORR) and possessed high activity as well as excellent long-term stability and methanol resistance in alkaline media. Remarkably, Fe3N@CNT/CC can directly play the role of both a gas diffusion layer and an electrocatalytic cathode in a zinc-air battery without additional means of catalyst loading, and it displays higher open-circuit voltage, power density, and specific capacity in comparison with a commercial Pt/C catalyst. This work is anticipated to inspire the design of cost-effective, easily prepared, and high-performance air electrodes for advanced electrochemical applications.

3.
Molecules ; 28(17)2023 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-37687208

RESUMO

With the swift advancement of the wearable electronic devices industry, the energy storage components of these devices must possess the capability to maintain stable mechanical and chemical properties after undergoing multiple bending or tensile deformations. This circumstance has expedited research efforts toward novel electrode materials for flexible energy storage devices. Nonetheless, among the numerous materials investigated to date, the incorporation of metal current collectors or insulative adhesives remains requisite, which entails additional costs, unnecessary weight, and high contact resistance. At present, biomass-derived flexible architectures stand out as a promising choice in electrochemical energy device applications. Flexible self-supporting properties impart a heightened mechanical performance, obviating the need for additional binders and lowering the contact resistance. Renewable, earth-abundant biomass endows these materials with cost-effectiveness, diversity, and modulable chemical properties. To fully exploit the application potential in biomass-derived flexible carbon architectures, understanding the latest advancements and the comprehensive foundation behind their synthesis assumes significance. This review delves into the comprehensive analysis of biomass feedstocks and methods employed in the synthesis of flexible self-supporting carbon electrodes. Subsequently, the advancements in their application in energy storage devices are elucidated. Finally, an outlook on the potential of flexible carbon architectures and the challenges they face is provided.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...