Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Gene ; : 148753, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38972556

RESUMO

BACKGROUND: Transgenic insect-resistant rice offers an environmentally friendly approach to mitigate yield losses caused by lepidopteran pests, such as stem borers. Bt (Bacillus thuringiensis) genes encode insecticidal proteins and are widely used to confer insect resistance to genetically modified crops. This study investigated the integration, inheritance, and expression characteristics of codon-optimised synthetic Bt genes, cry1C* and cry2A*, in transgenic early japonica rice lines. METHODS: The early japonica rice cultivar, Songgeng 9 (Oryza sativa), was transformed with cry1C* or cry2A*, which are driven by the ubi promoter via Agrobacterium tumefaciens-mediated transformation. Molecular analyses, including quantitative PCR (qPCR), enzyme-linked immunosorbent assay (ELISA), and Southern blot analysis were performed to confirm transgene integration, inheritance, transcriptional levels, and protein expression patterns across different tissues and developmental stages. RESULTS: Stable transgenic early japonica lines exhibiting single-copy transgene integration were established. Transcriptional analysis revealed variations in Bt gene expression among lines, tissues, and growth stages, with higher expression levels observed in leaves than in other organs. Notably, cry2A* exhibited consistently higher mRNA and protein levels than cry1C* across all examined tissues and developmental time points. Bt protein accumulation followed the trend of leaves > stem sheaths > young panicles > brown rice, with peak expression during the filling stage in the vegetative tissues. CONCLUSIONS: Synthetic cry2A* displayed markedly elevated transcription and translation compared to cry1C* in the transgenic early japonica rice lines examined. Distinct spatiotemporal patterns of Bt gene expression were elucidated, providing insights into the potential insect resistance conferred by these genes in rice. These findings will contribute to the development of insect-resistant japonica rice varieties and facilitate the rational deployment of Bt crops.

2.
Plant Signal Behav ; 19(1): 2318514, 2024 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-38375792

RESUMO

Chilling stress is an important environmental factor that affects rice (Oryza sativa L.) growth and yield, and the booting stage is the most sensitive stage of rice to chilling stress. In this study, we focused on OsRBCS3, a rice gene related to chilling tolerance at the booting stage, which encodes the key enzyme ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) small subunit in photosynthesis. The aim of this study was to elucidate the role and mechanism of OsRBCS3 in rice chilling tolerance at the booting stage. The expression levels of OsRBCS3 under chilling stress were compared in two japonica rice cultivars with different chilling tolerances: Kongyu131 (KY131) and Longjing11 (LJ11). A positive correlation was found between OsRBCS3 expression and chilling tolerance. Over-expression (OE) and knock-out (KO) lines of OsRBCS3 were constructed using over-expression and CRISPR/Cas9 technology, respectively, and their chilling tolerance was evaluated at the seedling and booting stages. The results showed that OE lines exhibited higher chilling tolerance than wild-type (WT) lines at both seedling and booting stages, while KO lines showed lower chilling tolerance than WT lines. Furthermore, the antioxidant enzyme activities, malondialdehyde (MDA) content and Rubisco activity of four rice lines under chilling stress were measured, and it was found that OE lines had stronger antioxidant and photosynthetic capacities, while KO lines had the opposite effects. This study validated that OsRBCS3 plays an important role in rice chilling tolerance at the booting stage, providing new molecular tools and a theoretical basis for rice chilling tolerance breeding.


Assuntos
Antioxidantes , Oryza , Antioxidantes/metabolismo , Oryza/metabolismo , Ribulose-Bifosfato Carboxilase/genética , Ribulose-Bifosfato Carboxilase/metabolismo , Plântula/metabolismo , Fotossíntese/genética , Temperatura Baixa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...