Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Cell ; 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38835286

RESUMO

N 6-methyladenosine (m6A) is the most abundant mRNA modification and plays diverse roles in eukaryotes, including plants. It regulates various processes, including plant growth, development, and responses to external or internal stress responses. However, the mechanisms underlying how m6A is related to environmental stresses in both mammals and plants remain elusive. Here, we identified EVOLUTIONARILY CONSERVED C-TERMINAL REGION 8 (ECT8) as an m6A reader protein and showed that its m6A-binding capability is required for salt stress responses in Arabidopsis (Arabidopsis thaliana). ECT8 accelerates the degradation of its target transcripts through direct interaction with the decapping protein DECAPPING 5 within processing bodies. We observed a significant increase in the ECT8 expression level under various environmental stresses. Using salt stress as a representative stressor, we found that the transcript and protein levels of ECT8 rise in response to salt stress. The increased abundance of ECT8 protein results in the enhanced binding capability to m6A-modified mRNAs, thereby accelerating their degradation, especially those of negative regulators of salt stress responses. Our results demonstrated that ECT8 acts as an abiotic stress sensor, facilitating mRNA decay, which is vital for maintaining transcriptome homeostasis and enhancing stress tolerance in plants. Our findings not only advance the understanding of epitranscriptomic gene regulation but also offer potential applications for breeding more resilient crops in the face of rapidly changing environmental conditions.

2.
Genome Biol ; 24(1): 103, 2023 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-37122016

RESUMO

BACKGROUND: RNA N6-methyladenosine (m6A) modification is critical for plant growth and crop yield. m6A reader proteins can recognize m6A modifications to facilitate the functions of m6A in gene regulation. ECT2, ECT3, and ECT4 are m6A readers that are known to redundantly regulate trichome branching and leaf growth, but their molecular functions remain unclear. RESULTS: Here, we show that ECT2, ECT3, and ECT4 directly interact with each other in the cytoplasm and perform genetically redundant functions in abscisic acid (ABA) response regulation during seed germination and post-germination growth. We reveal that ECT2/ECT3/ECT4 promote the stabilization of their targeted m6A-modified mRNAs, but have no function in alternative polyadenylation and translation. We find that ECT2 directly interacts with the poly(A) binding proteins, PAB2 and PAB4, and maintains the stabilization of m6A-modified mRNAs. Disruption of ECT2/ECT3/ECT4 destabilizes mRNAs of ABA signaling-related genes, thereby promoting the accumulation of ABI5 and leading to ABA hypersensitivity. CONCLUSION: Our study reveals a unified functional model of m6A mediated by m6A readers in plants. In this model, ECT2/ECT3/ECT4 promote stabilization of their target mRNAs in the cytoplasm.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/genética , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Ácido Abscísico , Germinação/genética , Estabilidade de RNA , Proteínas de Ligação a Poli(A)/genética , Proteínas de Ligação a Poli(A)/metabolismo , Sementes/genética , Regulação da Expressão Gênica de Plantas , Peptídeos e Proteínas de Sinalização Intracelular/genética
3.
J Colloid Interface Sci ; 537: 554-561, 2019 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-30471610

RESUMO

A colorimetric assay is described for sensitive determination of Hg2+ ions based on the MoS2-Au composites as peroxidase mimetics, which are synthesized by microwave-assisted solvothermal method. The addition of Hg2+ stimulates their peroxidase-like activity, along with lower Michaelis constant toward the oxidation of 3,3',5,5'-tetramethylbenzidine (TMB) with H2O2, allowing the composites for direct determination of Hg2+. A broad linear response is obtained ranging from 20 nM to 20 µM with a detection limit (LOD) of 5 nM. The superior peroxidase-like activity is attributed to the large surface area of MoS2 nanosheets and the synergistic catalytic effect of MoS2 and Au. The Hg2+-stimulation effect implies the strong interaction between Hg2+ and MoS2-Au, where the XPS results confirm the presence of metallic Hg0, indicative of an Au-Hg amalgam. This colorimetric assay is successfully applied for the determination of Hg2+ in environmental water (tap water and Yellow River water) with excellent selectivity over interfering cations.


Assuntos
Materiais Biomiméticos/metabolismo , Biomimética , Dissulfetos/metabolismo , Ouro/metabolismo , Mercúrio/análise , Molibdênio/metabolismo , Peroxidase/metabolismo , Poluentes Químicos da Água/análise , Materiais Biomiméticos/química , Colorimetria , Dissulfetos/química , Monitoramento Ambiental , Ouro/química , Mercúrio/farmacologia , Molibdênio/química , Tamanho da Partícula , Peroxidase/química , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...