Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Eur J Med Chem ; 275: 116594, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-38879970

RESUMO

Chemokine receptor 4 (CXCR4) is a subtype receptor protein of the GPCR family with a seven-transmembrane structure widely distributed in human tissues. CXCR4 is involved in diseases (e.g., HIV-1 infection), cancer proliferation and metastasis, inflammation signaling pathways, and leukemia, making it a promising drug target. Clinical trials on CXCR4 antagonists mainly focused on peptides and antibodies, with a few small molecule compounds, such as AMD11070 (2) and MSX-122 (3), showing promise in cancer treatment. This perspective discusses the structure-activity relationship (SAR) of CXCR4 and its role in diseases, mainly focusing on the SAR of CXCR4 antagonists. It also explores the standard structural features and target interactions of CXCR4 binding in different disease categories. Furthermore, it investigates various modification strategies to propose potential improvements in the effectiveness of CXCR4 drugs.


Assuntos
Receptores CXCR4 , Receptores CXCR4/antagonistas & inibidores , Receptores CXCR4/metabolismo , Humanos , Relação Estrutura-Atividade , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Neoplasias/metabolismo , Estrutura Molecular , Animais , Antineoplásicos/farmacologia , Antineoplásicos/química , Desenvolvimento de Medicamentos
2.
ACS Appl Mater Interfaces ; 16(11): 13573-13584, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38439708

RESUMO

Periodontitis, a complex inflammatory disease initiated by bacterial infections, presents a significant challenge in public health. The increased levels of reactive oxygen species and the subsequent exaggerated immune response associated with periodontitis often lead to alveolar bone resorption and tooth loss. Herein, we develop multifunctional metal-phenolic composites (i.e., Au@MPN-BMP2) to address the complex nature of periodontitis, where gold nanoparticles (AuNPs) are coated by metal-phenolic networks (MPNs) and bone morphogenetic protein 2 (BMP2). In this design, MPNs exhibit remarkable antibacterial and antioxidant properties, and AuNPs and BMP2 promote osteogenic differentiation of bone marrow mesenchymal stem cells under inflammatory conditions. In a rat model of periodontitis, treatment with Au@MPN-BMP2 leads to notable therapeutic outcomes, including mitigated oxidative stress, reduced progression of inflammation, and the significant prevention of inflammatory bone loss. These results highlight the multifunctionality of Au@MPN-BMP2 nanoparticles as a promising therapeutic approach for periodontitis, addressing both microbial causative factors and an overactivated immune response. We envision that the rational design of metal-phenolic composites will provide versatile nanoplatforms for tissue regeneration and potential clinical applications.


Assuntos
Nanopartículas Metálicas , Periodontite , Ratos , Animais , Osteogênese , Ouro/farmacologia , Nanopartículas Metálicas/uso terapêutico , Periodontite/tratamento farmacológico , Antibacterianos/farmacologia , Diferenciação Celular
3.
Eur J Med Chem ; 259: 115683, 2023 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-37531744

RESUMO

Receptor-interacting protein kinase 2 (RIPK2) belongs to the receptor-interacting protein family (RIPs), which is mainly distributed in the cytoplasm. RIPK2 is widely expressed in human tissues, and its mRNA level is highly expressed in the spleen, leukocytes, placenta, testis, and heart. RIPK2 is a dual-specificity kinase with multiple domains, which can interact with tumor necrosis factor receptor (TNFR), and participate in the Toll-like receptor (TLR) and nucleotide-binding oligomerization domain (NOD) signaling pathways. It is considered as a vital adapter molecule involved in the innate immunity, adaptive immunity, and apoptosis. Functionally, RIPK2 and its targeted small molecules are of great significance in inflammatory responses, autoimmune diseases and tumors. The present study reviews the molecule structure and biological functions of RIPK2, and its correlation between human diseases. In addition, we focus on the structure-activity relationship of small molecule inhibitors of RIPK2 and their therapeutic potential in human diseases.


Assuntos
Imunidade Inata , Inibidores de Proteínas Quinases , Transdução de Sinais , Humanos , Masculino , Proteína Serina-Treonina Quinase 2 de Interação com Receptor/antagonistas & inibidores , Receptores Toll-Like , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia
4.
Microbiol Res ; 268: 127291, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36542917

RESUMO

A new field of microbial research is the relationship between microorganisms and multicellular hosts. It is known that gut microbes can cause various endocrine system diseases, such as diabetes and thyroid disease. Changes in the composition or structure and the metabolites of gut microbes may cause gastrointestinal disorders, including ulcers or intestinal perforation and other inflammatory and autoimmune diseases. In recent years, reports on the interactions between intestinal microorganisms and endocrine system diseases have been increasingly documented. In the meantime, the treatment based on gut microbiome has also been paid much attention. For example, fecal microbiota transplantation is found to have a therapeutic effect on many diseases. As such, understanding the gut microbiota-endocrine system interactions is of great significance for the theranostic of endocrine system diseases. Herein, we summarize the relations of gut microbiome with endocrine system diseases, and discuss the potentials of regulating gut microbiome in treating those diseases. In addition, the concerns and possible solutions regarding the gut microbiome-based therapy are discussed.


Assuntos
Doenças do Sistema Endócrino , Gastroenteropatias , Microbioma Gastrointestinal , Humanos , Gastroenteropatias/terapia , Doenças do Sistema Endócrino/terapia
5.
Front Pharmacol ; 13: 968104, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36386190

RESUMO

Angiotensin-converting enzyme (ACE), a zinc metalloprotein, is a central component of the renin-angiotensin system (RAS). It degrades bradykinin and other vasoactive peptides. Angiotensin-converting-enzyme inhibitors (ACE inhibitors, ACEIs) decrease the formation of angiotensin II and increase the level of bradykinin, thus relaxing blood vessels as well as reducing blood volume, lowering blood pressure and reducing oxygen consumption by the heart, which can be used to prevent and treat cardiovascular diseases and kidney diseases. Nevertheless, ACEIs are associated with a range of adverse effects such as renal insufficiency, which limits their use. In recent years, researchers have attempted to reduce the adverse effects of ACEIs by improving the selectivity of ACEIs for structural domains based on conformational relationships, and have developed a series of novel ACEIs. In this review, we have summarized the research advances of ACE inhibitors, focusing on the development sources, design strategies and analysis of structure-activity relationships and the biological activities of ACE inhibitors.

6.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 52(2): 170-175, 2021 Mar.
Artigo em Chinês | MEDLINE | ID: mdl-33829687

RESUMO

At present, bacterial infections are mainly treated with antibiotics, but new treatment methods are urgently needed because of growing problems with antibiotic resistance. Therefore, phage therapy will be a potential solution to the problem of bacterial drug resistance, and the combined use of bacteriophage and antibiotics is also considered a potential treatment option. However, there has not been any well-designed clinical controlled trials on phage therapy. More future research needs to be done to solve the problems of phage therapy, for example, its narrow antibacterial spectrum, the uncertainty regarding treatment safety, and the bacterial resistance. Some refractory diseases such as breast cancer and alcoholic hepatitis are difficult to treat clinically. The successful experimental research on bacteriophages reported in these fields provides new ideas of treatment for more refractory diseases in the future. In addition, bacteriophages also showed promising performance in vaccine applications and osteanagenesis. We herein summarize the existing weaknesses of phage therapy and its application prospects in treating systemic diseases, hoping to promote further clinical application research of phage therapy.


Assuntos
Infecções Bacterianas , Bacteriófagos , Terapia por Fagos , Antibacterianos/farmacologia , Infecções Bacterianas/terapia , Farmacorresistência Bacteriana , Humanos , Estudos Retrospectivos
7.
Signal Transduct Target Ther ; 5(1): 89, 2020 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-32533062

RESUMO

Coronavirus infections of multiple origins have spread to date worldwide, causing severe respiratory diseases. Seven coronaviruses that infect humans have been identified: HCoV-229E, HCoV-OC43, HCoV-NL63, HCoV-HKU1, SARS-CoV, MERS-CoV, and SARS-CoV-2. Among them, SARS-CoV and MERS-CoV caused outbreaks in 2002 and 2012, respectively. SARS-CoV-2 (COVID-19) is the most recently discovered. It has created a severe worldwide outbreak beginning in late 2019, leading to date to over 4 million cases globally. Viruses are genetically simple, yet highly diverse. However, the recent outbreaks of SARS-CoV and MERS-CoV, and the ongoing outbreak of SARS-CoV-2, indicate that there remains a long way to go to identify and develop specific therapeutic treatments. Only after gaining a better understanding of their pathogenic mechanisms can we minimize viral pandemics. This paper mainly focuses on SARS-CoV, MERS-CoV, and SARS-CoV-2. Here, recent studies are summarized and reviewed, with a focus on virus-host interactions, vaccine-based and drug-targeted therapies, and the development of new approaches for clinical diagnosis and treatment.


Assuntos
Antivirais/uso terapêutico , Betacoronavirus/efeitos dos fármacos , Infecções por Coronavirus/tratamento farmacológico , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Pandemias , Pneumonia Viral/tratamento farmacológico , Transdução de Sinais/efeitos dos fármacos , Enzima de Conversão de Angiotensina 2 , Betacoronavirus/genética , Betacoronavirus/imunologia , Betacoronavirus/patogenicidade , COVID-19 , Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/virologia , Citocinas/antagonistas & inibidores , Citocinas/genética , Citocinas/imunologia , Regulação da Expressão Gênica , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia , Humanos , Coronavírus da Síndrome Respiratória do Oriente Médio/efeitos dos fármacos , Coronavírus da Síndrome Respiratória do Oriente Médio/genética , Coronavírus da Síndrome Respiratória do Oriente Médio/imunologia , Coronavírus da Síndrome Respiratória do Oriente Médio/patogenicidade , Terapia de Alvo Molecular/métodos , Peptidil Dipeptidase A/genética , Peptidil Dipeptidase A/imunologia , Pneumonia Viral/epidemiologia , Pneumonia Viral/imunologia , Pneumonia Viral/virologia , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/efeitos dos fármacos , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/genética , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/imunologia , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/patogenicidade , SARS-CoV-2 , Síndrome Respiratória Aguda Grave/tratamento farmacológico , Síndrome Respiratória Aguda Grave/epidemiologia , Síndrome Respiratória Aguda Grave/imunologia , Síndrome Respiratória Aguda Grave/virologia , Transdução de Sinais/genética , Transdução de Sinais/imunologia , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/imunologia , Linfócitos T/efeitos dos fármacos , Linfócitos T/imunologia , Linfócitos T/virologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...