Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Ethnopharmacol ; 249: 112385, 2020 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-31730888

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Cerebral ischemia, also known as stroke, can stimulate the proliferation and migration of endogenous neural stem cells (NSCS) in subventricular zone of the lateral ventricle and subgranularzone of the dentate gyrus in the adult hippocampus as a defense response to damage. However, the proliferation of endogenous NSCS is insufficient for central nervous system repair. Neurogenesis and anti-neuroinflammation are two important aspects for neuroprotection. Rhizome Ligusticum chuanxiong (LC), the dried rhizomes of Ligusticum striatum DC., has been widely used to treat stroke for over hundreds of years in Traditional Chinese Medicine. PURPOSE: of the study: Previous reports on pharmacological mechanism of LC mainly focus on the cerebral blood flow and thrombolysis. We aim to explore whether LC provides neuroprotective effect by increasing neurogenesis and inhibiting the IL-1ß, TNF-α and expressions of glial fibrillary acidic protein. MATERIALS AND METHODS: LC extract was delivered to microsphere-embolized (ME) cerebral ischemia Wister rats to examine its neuroprotection. Body weight, neurological scores, hematoxylin-eosin staining (HE), TUNEL assay were conducted for neurological damage. Neurogenesis was evaluated by assessing the expression of Doublecortin (DCX) and neurogenic differentiation1 (NeuroD1) through immunofluorescence staining. Western blot performed to measure the protein levels of growth associated protein-43(GAP-43), glial fibrillary acidic protein (GFAP). IL-1ß and TNF-α was detected by Elisa. RESULTS: LC alleviated pathomorphological change and apoptosis of neurons in the hippocampus caused by ME surgery. Furthermore, LC significantly increased the DCX in the DG of adult rat hippocampus at 14 days after surgery. A significant upregulation of GAP-43 compared to the ME after LC was administered. Besides, LC decreased pro-inflammatory cytokine (IL-1ß, TNF-α) and protein level of GFAP. CONCLUSION: The finding suggested that LC had the ability to protect neurons by promoting the endogenous proliferation of neuroblast and production of neural differentiation factor in rats after ischemia injury. Meanwhile, LC can anti-neuroinflammation, which is important for the treatment of neuron injury. Accordingly, LC perhaps a promising medicine for neuron damage therapy after cerebral ischemia.


Assuntos
Isquemia Encefálica/prevenção & controle , Ligusticum/química , Fármacos Neuroprotetores/farmacologia , Acidente Vascular Cerebral/prevenção & controle , Animais , Apoptose/efeitos dos fármacos , Modelos Animais de Doenças , Proteína Duplacortina , Hipocampo/efeitos dos fármacos , Hipocampo/patologia , Inflamação/prevenção & controle , Masculino , Microesferas , Células-Tronco Neurais/metabolismo , Neurogênese/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Neurônios/patologia , Ratos , Ratos Wistar
2.
Artigo em Inglês | MEDLINE | ID: mdl-31239867

RESUMO

Cynomorium songaricum Rupr is a very important traditional Chinese medicine for tonifying the kidney, which has a significant effect on improving estrogen level on the long term. In many studies, it can improve the learning and memory function of ovariectomized (OVX) model animals. 10 of the 50 rats received only bilateral back surgery and were harvested with the same amount of fat as the ovaries without removing the ovaries as sham group; remains underwent bilateral ovariectomy and equally randomized into five groups: sham group, with OVX as model group, estradiol valerate (EV, 0.2 mg/kg) as positive control, with 3.3 and 33 mg/kg body weight/day of ethyl acetate extract of Cynomorium songaricum extract (CSE) as low and high dosage groups, respectively. The orally administered CSE to ovariectomized rats exerted an ameliorative effect on learning and memory in the Morris water maze tests. All rats were sacrificed after 8 weeks of treatment, and tissue was analyzed using histopathology and electron microscopy. To comprehensively examine the mechanism, brain derived neurotrophic factor (BDNF), p-p38 mitogen-activated protein kinase (p-p38MAPK), extracellular regulated protein kinases (ERK), p-extracellular regulated protein kinases (p-ERK), and p-cAMP-response element binding protein (p-CREB) were detected by Western blotting. Using histopathology and electron microscopy, it was clearly observed that the pyramidal neurons of the hippocampal CA1 area were reduced in the OVX groups, indicating that CSE could attenuate the loss of pyramidal neurons in hippocampal CA1 and revert the synaptic morphological variations produced by ovariectomy. Mechanistically, the expressions of p-p38MAPK and p-ERK levels were significantly downregulated by CSE intervention, whereas the BDNF and p-CREB were significantly upregulated by CSE as compared to the control. Concisely, Cynomorium songaricum Rupr exhibited potential therapeutic effect on Neuroprotection of ovariectomized rats, and its effect was possibly exerted by p-CREB/BDNF mediated down regulation of ERK/p38MAPK.

3.
Front Pharmacol ; 9: 518, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29867513

RESUMO

Background: Astrogliosis has the potential to lead to harmful effects, namely, neuroinflammation, and to interfere with synapse sprouting. Previous studies have suggested that Lipocalin-2 (LCN2) acts as a key target in regulating the reaction of astrocytes. However, the underlying molecular mechanism is not fully elucidated. In the present study, we examined the neuroprotective and anti-inflammatory effects of Ginkgo biloba extract (EGB), a well-known extract with potential immunoregulatory properties in the nervous system. Methods: Triphenyltetrazolium chloride staining, hematoxylin-eosin staining, electron microscopy, and neurological assessments were performed in a microsphere-embolized rat model. Human astrocytes exposed to oxygen glucose deprivation (OGD) were used for in vitro experiments. Inflammatory cytokines, multi-labeling immunofluorescence, and Western blotting were used to investigate the molecular mechanisms underlying the EGB-mediated anti-inflammatory effects in vivo and in vitro. Results: EGB markedly attenuated cerebral infarction and neuronal apoptosis, reduced the inflammatory cytokine level, and alleviated neurological deficiencies in cerebral ischemic rats. After surgery, EGB significantly inhibited astrocyte activation, reduced the phosphorylation of STAT3 and JAK2 and decreased LCN2 expression. In vitro, EGB blocked OGD-induced STAT3 activation and the generation of pro-inflammatory cytokines in human astrocytes, and these effects were significantly enhanced by LCN2 overexpression. EGB downregulated these effects enhanced by LCN2 overexpression. Conclusion: EGB is demonstrated to mediate neuroinflammation, which protects against ischemic brain injury by inhibiting astrogliosis and suppresses neuroinflammation via the LCN2-JAK2/STAT3 pathway, providing insight into a promising therapeutic strategy for ischemic stroke.

4.
Molecules ; 22(10)2017 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-28954415

RESUMO

Purpose: Depression is a sickening psychiatric condition that is prevalent worldwide. To manage depression, the underlying modes of antidepressant effect of herbals are important to be explored for the development of natural drugs. Tiansi Liquid is a traditional Chinese medicine (TCM) that is prescribed for the management of depression, however its underlying mechanism of action is still uncertain. The purpose of this study was to systematically investigate the pharmacological mode of action of a herbal formula used in TCM for the treatment of depression. Methods: Based on literature search, an ingredients-targets database was developed for Tiansi Liquid, followed by the identification of targets related to depression. The interaction between these targets was evaluated on the basis of protein-protein interaction network constructed by STITCH and gene ontology (GO) enrichment analysis using ClueGO plugin. Results: As a result of literature search, 57 components in Tiansi Liquid formula and 106 potential targets of these ingredients were retrieved. A careful screening of these targets led to the identification of 42 potential targets associated with depression. Ultimately, 327 GO terms were found by analysis of gene functional annotation clusters and abundance value of these targets. Most of these terms were found to be closely related to depression. A significant number of protein targets such as IL10, MAPK1, PTGS2, AKT1, APOE, PPARA, MAPK1, MIF, NOS3 and TNF-α were found to be involved in the functioning of Tiansi Liquid against depression. Conclusions: The findings elaborate that Tiansi Liquid can be utilized to manage depression, however, multiple molecular mechanisms of action could be proposed for this effect. The observed core mechanisms could be the sensory perception of pain, regulation of lipid transport and lipopolysaccharide-mediated signaling pathway.


Assuntos
Antidepressivos/química , Proteínas de Transporte/química , Simulação por Computador , Cuscuta/química , Medicamentos de Ervas Chinesas/química , Modelos Teóricos , Morinda/química , Antidepressivos/farmacologia , Bases de Dados de Produtos Farmacêuticos , Medicamentos de Ervas Chinesas/farmacologia , Ligação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...