Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Genet ; 15: 1326434, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38716069

RESUMO

Background: Periodontitis and benign prostatic hyperplasia (BPH) are all common chronic diseases with higher incidence in middle-aged and old men. Several studies have indicated a potential association between periodontitis and BPH, although the findings remain inconclusive. However, there is no mendelian randomization (MR) studies to assess this association. Methods: The 40 men who had received health check-ups were included in an epidemiological study. Genetic data of BPH (13118 cases and 72799 controls) and periodontitis (3046 cases and 195395 controls) from FinnGen project was used to perform two-sample MR analysis. The inverse-variance weighted (IVW) model was identified as the primary analytical method, with MR Egger, weighted median, simple mode, and weighted mode serving as additional approaches. Results: The epidemiological analysis demonstrated a lack of statistically significant differences in the prevalence of clinical BPH between severe periodontitis group and non-severe periodontitis group. Similarly, no statistically significant differences were found in the prevalence of severe periodontitis among individuals with clinical BPH compared to those without. Additionally, Among the five models utilized in MR analysis, including the IVW model, no evidence of a causal link between periodontitis and BPH was observed. Conclusion: The findings from our epidemiological investigation and MR analysis do not provide support for a causal relationship between periodontitis and BPH.

2.
ACS Biomater Sci Eng ; 10(4): 2463-2476, 2024 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-38445948

RESUMO

The challenges in the treatment of extensive bone defects are infection control and bone regeneration. Bone tissue engineering is currently one of the most promising strategies. In this study, a short biopeptide with specific osteogenic ability is designed by fusion peptide technology and encapsulated with chitosan-modified poly(lactic acid-glycolic acid) (PLGA) microspheres. The fusion peptide (FP) mainly consists of an osteogenic functional sequence (P-15) and a bone-specific binding sequence (Asp-6), which can regulate bone formation accurately and efficiently. Chitosan-modified PLGA with antimicrobial and pro-healing effects is used to achieve the sustained release of fusion peptides. In the early stage, the antimicrobial and soft tissue healing effects can stop the wound infection as soon as possible, which is relevant for the subsequent bone regeneration process. Our data show that CS-PLGA@FP microspheres have antibacterial and pro-cell migration effects in vitro and excellent pro-wound-healing effects in vivo. In addition, CS-PLGA@FP microspheres promote the expression of osteogenic-related factors and show excellent bone regeneration in a rat defect model. Therefore, CS-PLGA@FP microspheres are an efficient biomaterial that can accelerate the recovery of bone defects.


Assuntos
Anti-Infecciosos , Quitosana , Ratos , Animais , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Ácido Poliglicólico , Ácido Láctico/farmacologia , Microesferas , Peptídeos/farmacologia
3.
iScience ; 26(11): 108212, 2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-37965149

RESUMO

Dental implants make it possible to replace teeth in more sophisticated ways. Nevertheless, peri-implantitis is one of the leading causes of implant failure, which can be avoided with proper soft tissue sealing. The aim of this study was to achieve the promotion of the synthesis of peri-implant epithelial hemidesmosome through Histatin 1 and porcine small intestinal submucosa (SIS) hydrogel to form a good peri-implant seal. The results show that hydrogel can improve the biological barrier function around implants by combining antibacterial, promoting soft tissue healing and promoting epithelial bonding. This means that the morphology and anti-infection ability of soft tissue are enhanced, which ensures the long-term stability of the implant.SIS-Hst1 hydrogel has certain clinical application in the prevention and early treatment of peri-implantitis. In conclusion, Hst1-SIS hydrogel, as a local administration system, provides experimental evidence for the prevention of peri-implant disease.

4.
Appl Microbiol Biotechnol ; 107(23): 7287-7299, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37750915

RESUMO

Enzyme preparation is one of the widely used additives in ruminant production. However, a suitable method of adding compound enzyme preparation (CEP) to the feeds is still lacking. This study investigated the effect of adding CEP on the diet of goats. Twenty 4-month-old Boer goats were randomly assigned to four groups. The dietary treatments contained different CEPs (Saccharomyces cerevisiae cells, cellulase, xylanase, ß-glucanase amylase, and protease) at the concentrations of 0, 0.25, 0.50, and 0.75 g/kg of feed provided for a period of 56 days. Adding CEP in goat feed significantly increased average daily gain (ADG) during the entire test period. The oxidative indices, hormones, and immune cells did not differ significantly among the different groups. CEP significantly increased the content of total volatile fatty acids measured at the end of the experiment on day 56 of the final normal feeding phase. 16S rDNA sequencing revealed that CEP increased the abundance of Ruminococcaceae in the rumen and g__norank_f__Eubacterium_coprostanoligenes_group, Oscillibacter g__unclassified_f__Ruminococcaceae, and g__unclassified_o__Oscillospirales in fecal matter collected on day 56 of the final normal feeding phase. However, CEP decreased the abundance of unclassified_f__Lachnospiraceae, norank_f__UCG-010, Butyrivibrio, and Saccharofermentans in the rumen. The abundance of Ruminococcaceae in the rumen and propionic acid was positively correlated with ADG. Function prediction showed that carbon fixation, carbohydrate digestion and absorption pathways were significantly enriched in rumen microbiota in the treatment group. The findings indicated that supplementation with 0.5 g CEP/kg of feed for 56 days significantly improves the production performance of goats without adverse health effects. KEY POINTS: • Feeding with compound enzyme preparation for 56 days significantly improved the productive performance but did not affect the antioxidative capacity and immunity of goats. • Supplementing compound enzyme preparation in diet could increase the relative abundance of Ruminococcus to increase the levels of short-chain fatty acids produced. • The most appropriate supplemental amount of compound enzyme preparation per kilogram of the diet was 0.5 g.


Assuntos
Cabras , Microbiota , Animais , Ração Animal/análise , Dieta/veterinária , Suplementos Nutricionais , Ácidos Graxos Voláteis/metabolismo , Fermentação , Rúmen/metabolismo
5.
Adv Healthc Mater ; 12(25): e2300560, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37562069

RESUMO

Restoring bone homeostasis is the key to the treatment of osteoporosis. How to increase osteogenic ability or inhibit osteoclast activity has always been a topic of great concern. In recent years, short peptides with biological activity have received great attention in bone repair. However, the application of short peptides is still limited due to the lack of a stable and targeted delivery system. Poly(lactic-co-glycolic acid) (PLGA) nanoparticles modified by alendronate (AL) to transport osteogenic peptides (OGP) (AL-PLGA@P NPs) are designed. Benefiting from the high affinity of AL for hydroxyapatite, AL-PLGA@P NPs have the ability to target bone. In this delivery system, OGP that promotes osteogenesis synergizes with AL, which inhibits osteoclasts, to regulate bone homeostasis, which gives them more advantages in the treatment of osteoporosis. The data shows that nanoparticles can selectively deliver peptides to the bone surface without systemic toxicity. Moreover, nanoparticles can upregulate osteogenesis-related factors (ALP, Runx-2, and BMP2) and downregulate osteoclast-related factors (TRAP and CTSK) in vitro. With AL-PLGA@P NPs, bone microarchitecture and bone mass are improved in ovariectomized osteoporosis rats. Therefore, this study proposes a novel osteoporosis-based drug system that effectively improves bone density.

6.
Animals (Basel) ; 11(3)2021 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-33807979

RESUMO

Low-temperature environments can strongly affect the normal growth and health of livestock. In winter, cold weather can be accompanied by strong winds that aggravate the effects of cold on livestock. In this study, two experiments were conducted to investigate the effect of low temperature and/or wind speed on physiological indices, rumen microbiota, immune responses and oxidative stress in sheep. When sheep were exposed to cold temperature and/or stronger wind speeds, the average daily gain (ADG) decreased (p < 0.05), and the abundance of Lachnospiraceae was significantly higher (p < 0.05). The acetate and propionate contents and the proportion of propionate in the rumen also significantly reduced (p < 0.05). The immunoglobulin G (IgG) and TH1-related cytokines in the blood were significantly lower (p < 0.05). However, antioxidant enzyme contents were significantly increased and the concentration of malondialdehyde (MDA) was reduced (p < 0.05). In a cold environment, the abundance of Lachnospiraceae in the rumen of sheep was highly enriched, and the decreasing of propionate might be one of the factors affecting the immunity of the animals, the sheep did not suffer from oxidative damage during the experiment.

7.
Stem Cell Res Ther ; 11(1): 295, 2020 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-32680565

RESUMO

BACKGROUND: The oral cavity is a complex environment in which periodontal tissue is constantly stimulated by external microorganisms and mechanical forces. Proper mechanical force helps maintain periodontal tissue homeostasis, and improper inflammatory response can break the balance. Periodontal ligament (PDL) cells play crucial roles in responding to these challenges and maintaining the homeostasis of periodontal tissue. However, the mechanisms underlying PDL cell property changes induced by inflammatory and mechanical force microenvironments are still unclear. Recent studies have shown that exosomes function as a means of cell-cell and cell-matrix communication in biological processes. METHODS: Human periodontal ligament stem cells (HPDLSCs) were tested by the CCK8 assay, EdU, alizarin red, and ALP staining to evaluate the functions of exosomes induced by a mechanical strain. MicroRNA sequencing was used to find the discrepancy miRNA in exosomes. In addition, real-time PCR, FISH, luciferase reporter assay, and western blotting assay were used to investigate the mechanism of miR-181b-5p regulating proliferation and osteogenic differentiation through the PTEN/AKT pathway. RESULTS: In this study, the exosomes secreted by MLO-Y4 cells exposed to mechanical strain (Exosome-MS) contributed to HPDLSC proliferation and osteogenic differentiation. High-throughput miRNA sequencing showed that miR181b-5p was upregulated in Exosome-MS compared to the exosomes derived from MLO-Y4 cells lacking mechanical strain. The luciferase reporter assay demonstrated that miR-181b-5p may target phosphatase tension homolog deletion (PTEN). In addition, PTEN was negatively regulated by overexpressing miR-181b-5p. Real-time PCR and western blotting assay verified that miR-181b-5p enhanced the protein kinase B (PKB, also known as AKT) activity and improved downstream factor transcription. Furthermore, miR-181b-5p effectively ameliorated the inhibition of HPDLSC proliferation and promoted HPDLSC induced by inflammation. CONCLUSIONS: This study concluded that exosomes induced by mechanical strain promote HPDLSC proliferation via the miR-181b-5p/PTEN/AKT signaling pathway and promote HPDLSC osteogenic differentiation by BMP2/Runx2, suggesting a potential mechanism for maintaining periodontal homeostasis.


Assuntos
Fenômenos Biológicos , Exossomos , MicroRNAs , Diferenciação Celular , Proliferação de Células , Exossomos/genética , Exossomos/metabolismo , Humanos , MicroRNAs/genética , Osteócitos/metabolismo , Osteogênese/genética , PTEN Fosfo-Hidrolase/genética , Ligamento Periodontal/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...