Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(7)2023 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-37050539

RESUMO

Different infrared (IR) planar geometric calibration targets have been developed over the years that exploit a well-established and flexible optical camera geometric calibration procedure following the pinhole approximation. This geometric calibration is typically neglected in IR cameras, due to the relatively low resolution of thermal images and the complex IR targets needed for the geometric calibration in comparison to the optical targets. In this study, a thorough literature review of numerous IR camera geometric calibration targets, along with their respective outcomes, were summarized and leveraged to deliver a practical checkerboard target for less experienced end users, while offering the lowest reprojection errors. It was concluded that the fabrication of high emissivity contrast and precise square points of intersection within a checkerboard pattern extends the accuracy of capturing these control points in a thermal image for an optimized IR camera geometric calibration. Accordingly, two simple planar checkerboard targets were fabricated using laser engraving and ultraviolet (UV) printing technologies on a polished stainless steel (SS304) plate. The UV-printed checkerboard target on a polished metallic alloy delivered the lowest mean reprojection error (MRE) of 0.057 pixels and the lowest root mean square error (RMSE) of reprojection of 0.063 pixels, with a standard deviation lower than 0.003 pixels. The UV-printed design offers better accuracy than any other checkerboard calibration target, and comparable results to the best prominent circular pattern results reported in the literature.

2.
Sensors (Basel) ; 23(5)2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36904849

RESUMO

Emissivity variations are one of the most critical challenges in thermography technologies; this is due to the temperature calculation strongly depending on emissivity settings for infrared signal extraction and evaluation. This paper describes an emissivity correction and thermal pattern reconstruction technique based on physical process modelling and thermal feature extraction, for eddy current pulsed thermography. An emissivity correction algorithm is proposed to address the pattern observation issues of thermography in both spatial and time domains. The main novelty of this method is that the thermal pattern can be corrected based on the averaged normalization of thermal features. In practice, the proposed method brings benefits in enhancing the detectability of the faults and characterization of the materials without the interference of the emissivity variation problem at the object's surfaces. The proposed technique is verified in several experimental studies, such as the case-depth evaluation of heat-treatment steels, failures, and fatigues of gears made of the heat-treated steels that are used for rolling stock applications. The proposed technique can improve the detectability of the thermography-based inspection methods and would improve the inspection efficiency for high-speed NDT&E applications, such as rolling stock applications.

4.
Ultrasonics ; 105: 106115, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32193013

RESUMO

The ultrasonic testing method is a well-known non-destructive testing technique which has been applied to the tube inspection for guarantying the quality of the production. However, there exist several challenges to detect the defects of tubes with small diameter and thin-wall due to the complex of multiple reflections and waveform conversion. Parameters selection of the transducer takes key role to enhance the detection sensitivity such as frequency, size, refraction angle, distance offset, and focal point distance. This selection is generally dependent on human experience as it is highly time-consuming and subjective. In this paper, a novel parameter selection method based on physical perspective linked forward-inverse intelligence strategy has been proposed for ultrasonic immersed testing method. The optimized parameters can be calculated automatically while both testing and calibration repeated experiments can be avoided. The proposed method is computationally affordable and yields a high accuracy objective performance. Both simulation and experiments have been conducted to verify the efficacy of the proposed method.

5.
Sensors (Basel) ; 18(7)2018 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-29970807

RESUMO

An exponential increase in large-scale infrastructure facilitates the development of wireless passive sensors for permanent installation and in-service health monitoring. Due to their wireless, passive and cost-effective characteristics, ultra-high frequency (UHF) radio frequency identification (RFID) tag antenna based sensors are receiving increasing attention for structural health monitoring (SHM). This paper uses a circular patch antenna sensor with an open rectangular window for crack monitoring. The sensing mechanism is quantitatively studied in conjunction with a mode analysis, which can uncover the intrinsic principle for turning an antenna into a crack sensor. The robustness of the feature is examined when the variation of crack position associated with an aluminum sample and the antenna sensor is considered. The experimental results demonstrate a reasonable sensitivity and resolution for crack characterization.

6.
IEEE Trans Image Process ; 27(5): 2160-2175, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29432098

RESUMO

Thermographic inspection has been widely applied to non-destructive testing and evaluation with the capabilities of rapid, contactless, and large surface area detection. Image segmentation is considered essential for identifying and sizing defects. To attain a high-level performance, specific physics-based models that describe defects generation and enable the precise extraction of target region are of crucial importance. In this paper, an effective genetic first-order statistical image segmentation algorithm is proposed for quantitative crack detection. The proposed method automatically extracts valuable spatial-temporal patterns from unsupervised feature extraction algorithm and avoids a range of issues associated with human intervention in laborious manual selection of specific thermal video frames for processing. An internal genetic functionality is built into the proposed algorithm to automatically control the segmentation threshold to render enhanced accuracy in sizing the cracks. Eddy current pulsed thermography will be implemented as a platform to demonstrate surface crack detection. Experimental tests and comparisons have been conducted to verify the efficacy of the proposed method. In addition, a global quantitative assessment index F-score has been adopted to objectively evaluate the performance of different segmentation algorithms.

7.
Sensors (Basel) ; 17(6)2017 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-28621742

RESUMO

A high sensitivity refractive index sensor based on a single mode-small diameter no core fiber structure is proposed. In this structure, a small diameter no core fiber (SDNCF) used as a sensor probe, was fusion spliced to the end face of a traditional single mode fiber (SMF) and the end face of the SDNCF was coated with a thin film of gold to provide reflective light. The influence of SDNCF diameter and length on the refractive index sensitivity of the sensor has been investigated by both simulations and experiments, where results show that the diameter of SDNCF has significant influence. However, SDNCF length has limited influence on the sensitivity. Experimental results show that a sensitivity of 327 nm/RIU (refractive index unit) has been achieved for refractive indices ranging from 1.33 to 1.38, which agrees well with the simulated results with a sensitivity of 349.5 nm/RIU at refractive indices ranging from 1.33 to 1.38.

8.
Sensors (Basel) ; 17(2)2017 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-28146067

RESUMO

In recent few years, the antenna and sensor communities have witnessed a considerable integration of radio frequency identification (RFID) tag antennas and sensors because of the impetus provided by internet of things (IoT) and cyber-physical systems (CPS). Such types of sensor can find potential applications in structural health monitoring (SHM) because of their passive, wireless, simple, compact size, and multimodal nature, particular in large scale infrastructures during their lifecycle. The big data from these ubiquitous sensors are expected to generate a big impact for intelligent monitoring. A remarkable number of scientific papers demonstrate the possibility that objects can be remotely tracked and intelligently monitored for their physical/chemical/mechanical properties and environment conditions. Most of the work focuses on antenna design, and significant information has been generated to demonstrate feasibilities. Further information is needed to gain deep understanding of the passive RFID antenna sensor systems in order to make them reliable and practical. Nevertheless, this information is scattered over much literature. This paper is to comprehensively summarize and clearly highlight the challenges and state-of-the-art methods of passive RFID antenna sensors and systems in terms of sensing and communication from system point of view. Future trends are also discussed. The future research and development in UK are suggested as well.

9.
Sci Rep ; 7: 42073, 2017 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-28169361

RESUMO

Emerging integrated sensing and monitoring of material degradation and cracks are increasingly required for characterizing the structural integrity and safety of infrastructure. However, most conventional nondestructive evaluation (NDE) methods are based on single modality sensing which is not adequate to evaluate structural integrity and natural cracks. This paper proposed electromagnetic pulsed thermography for fast and comprehensive defect characterization. It hybrids multiple physical phenomena i.e. magnetic flux leakage, induced eddy current and induction heating linking to physics as well as signal processing algorithms to provide abundant information of material properties and defects. New features are proposed using 1st derivation that reflects multiphysics spatial and temporal behaviors to enhance the detection of cracks with different orientations. Promising results that robust to lift-off changes and invariant features for artificial and natural cracks detection have been demonstrated that the proposed method significantly improves defect detectability. It opens up multiphysics sensing and integrated NDE with potential impact for natural understanding and better quantitative evaluation of natural cracks including stress corrosion crack (SCC) and rolling contact fatigue (RCF).


Assuntos
Materiais de Construção/análise , Teste de Materiais/métodos , Termografia/métodos , Algoritmos , Corrosão , Fenômenos Eletromagnéticos , Calefação , Humanos , Teste de Materiais/instrumentação , Termografia/instrumentação
10.
Sensors (Basel) ; 16(6)2016 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-27338389

RESUMO

This paper reviews recent developments of eddy current pulsed thermography (ECPT) for material characterization and nondestructive evaluation (NDE). Due to the fact that line-coil-based ECPT, with the limitation of non-uniform heating and a restricted view, is not suitable for complex geometry structures evaluation, Helmholtz coils and ferrite-yoke-based excitation configurations of ECPT are proposed and compared. Simulations and experiments of new ECPT configurations considering the multi-physical-phenomenon of hysteresis losses, stray losses, and eddy current heating in conjunction with uniform induction magnetic field have been conducted and implemented for ferromagnetic and non-ferromagnetic materials. These configurations of ECPT for metallic material and defect characterization are discussed and compared with conventional line-coil configuration. The results indicate that the proposed ECPT excitation configurations can be applied for different shapes of samples such as turbine blade edges and rail tracks.

11.
Sci Rep ; 6: 25480, 2016 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-27158061

RESUMO

Electromagnetic mechanism of Joule heating and thermal conduction on conductive material characterization broadens their scope for implementation in real thermography based Nondestructive testing and evaluation (NDT&E) systems by imparting sensitivity, conformability and allowing fast and imaging detection, which is necessary for efficiency. The issue of automatic material evaluation has not been fully addressed by researchers and it marks a crucial first step to analyzing the structural health of the material, which in turn sheds light on understanding the production of the defects mechanisms. In this study, we bridge the gap between the physics world and mathematical modeling world. We generate physics-mathematical modeling and mining route in the spatial-, time-, frequency-, and sparse-pattern domains. This is a significant step towards realizing the deeper insight in electromagnetic thermography (EMT) and automatic defect identification. This renders the EMT a promising candidate for the highly efficient and yet flexible NDT&E.

12.
Rev Sci Instrum ; 84(10): 104901, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24182145

RESUMO

Eddy Current Pulsed Thermography (ECPT), an emerging Non-Destructive Testing and Evaluation technique, has been applied for a wide range of materials. The lateral heat diffusion leads to decreasing of temperature contrast between defect and defect-free area. To enhance the flaw contrast, different statistical methods, such as Principal Component Analysis and Independent Component Analysis, have been proposed for thermography image sequences processing in recent years. However, there is lack of direct and detailed independent comparisons in both algorithm implementations. The aim of this article is to compare the two methods and to determine the optimized technique for flaw contrast enhancement in ECPT data. Verification experiments are conducted on artificial and thermal fatigue nature crack detection.

13.
Sensors (Basel) ; 11(8): 7773-98, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22164045

RESUMO

Optical non-destructive testing (NDT) has gained more and more attention in recent years, mainly because of its non-destructive imaging characteristics with high precision and sensitivity. This paper provides a review of the main optical NDT technologies, including fibre optics, electronic speckle, infrared thermography, endoscopic and terahertz technology. Among them, fibre optics features easy integration and embedding, electronic speckle focuses on whole-field high precision detection, infrared thermography has unique advantages for tests of combined materials, endoscopic technology provides images of the internal surface of the object directly, and terahertz technology opens a new direction of internal NDT because of its excellent penetration capability to most of non-metallic materials. Typical engineering applications of these technologies are illustrated, with a brief introduction of the history and discussion of recent progress.


Assuntos
Óptica e Fotônica , Eletrônica , Desenho de Equipamento , Interferometria/métodos , Lasers , Fibras Ópticas , Espectrofotometria Infravermelho/métodos , Espectroscopia Terahertz/métodos
14.
J Opt Soc Am A Opt Image Sci Vis ; 23(12): 3072-9, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17106463

RESUMO

A hybrid vision system for online measurement of surface roughness is introduced. The hybrid vision system applies two cameras for capturing the laser speckle pattern and scattering images simultaneously. With the help of advanced image processing, several features of texture and shape are computed for the surface roughness characterization. On the basis of experimental tests, feature fusion to improve measurement range and linearization of the measurement is also discussed.

15.
Appl Opt ; 45(35): 8839-47, 2006 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-17119581

RESUMO

Surface speckle pattern intensity distribution resulting from laser light scattering from a rough surface contains various information about the surface geometrical and physical properties. A surface roughness measurement technique based on the texture analysis of surface speckle pattern texture images is put forward. In the surface roughness measurement technique, the speckle pattern texture images are taken by a simple setup configuration consisting of a laser and a CCD camera. Our experimental results show that the surface roughness contained in the surface speckle pattern texture images has a good monotonic relationship with their energy feature of the gray-level co-occurrence matrices. After the measurement system is calibrated by a standard surface roughness specimen, the surface roughness of the object surface composed of the same material and machined by the same method as the standard specimen surface can be evaluated from a single speckle pattern texture image. The robustness of the characterization of speckle pattern texture for surface roughness is also discussed. Thus the surface roughness measurement technique can be used for an in-process surface measurement.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...