Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Med Rep ; 27(4)2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36825562

RESUMO

Following the publication of the above paper, a concerned reader drew to the Editor's attention that the "con" and "ox­LDL" panels in Fig. 1E on p. 3602, and various data panels included in Figs. 3 and 5 on p. 3604, contained apparent anomalies, including what appeared to be matching patternings of cellular data either within the same figure panels or comparing among the data panels. After having conducted an independent investigation in the Editorial Office, the Editor of Molecular Medicine Reports has determined that the above paper should be retracted from the Journal on account of a lack of confidence in the overall authenticity of the data. After having consulted the authors in this regard, they agreed with the decision to retract this paper. The Editor deeply regrets any inconvenience that has been caused to the readership of the Journal. [Molecular Medicine Reports 12: 3599­3606, 2015; DOI: 10.3892/mmr.2015.3864.

2.
Clin Chim Acta ; 536: 86-93, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36150521

RESUMO

Chronic inflammation caused by immune cells and their mediators is a characteristic of atherosclerosis. Interleukin-38 (IL-38), a member of the IL-1 family, exerts multiple anti-inflammatory effects via specific ligand-receptor interactions. Upon recognizing a specific receptor, IL-38 restrains mitogen-activated protein kinase (MAPK), nuclear factor kappa B (NK-κB), or other inflammation-related signaling pathways in inflammatory disease. Further research has shown that IL-38 also displays anti-atherosclerotic effects and reduces the occurrence and risk of cardiovascular events. On the one hand, IL-38 can regulate innate and adaptive immunity to inhibit inflammation, reduce pathological neovascularization, and inhibit apoptosis. On the other hand, it can curb obesity, reduce hyperlipidemia, and restrain insulin resistance to reduce cardiovascular disease risk. Therefore, this article expounds on the vital function of IL-38 in the development of atherosclerosis to provide a theoretical basis for further in-depth studies of IL-38 and insights on the prophylaxis and treatment of atherosclerosis.


Assuntos
Aterosclerose , NF-kappa B , Anti-Inflamatórios/uso terapêutico , Aterosclerose/metabolismo , Humanos , Inflamação/metabolismo , Interleucina-1 , Interleucinas , Ligantes , Proteínas Quinases Ativadas por Mitógeno/metabolismo
4.
ESC Heart Fail ; 8(4): 3214-3222, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34041859

RESUMO

AIMS: Myeloid differentiation protein 1 (MD1) was shown to ameliorate pressure overload-induced cardiac hypertrophy and fibrosis by negatively regulating the MEK-ERK1/2 and NF-κB pathways. However, whether MD1 modulates cardiac function and whether the Akt pathway mediates the benefits of MD1 in pressure overload-induced cardiac remodelling remain unclear. METHODS AND RESULTS: Male cardiac-specific transgenic MD1 (MD1-TG) mice, MD1-knockout (KO) mice and wild-type (WT) littermates aged 8-10 weeks were subjected to sham operation and aortic banding (AB) for 4 weeks. Then, left ventricular (LV) hypertrophy, fibrosis and function of the mice were assessed. When compared with WT-AB mice, MD1-TGs showed decreased cross-sectional area (CSA) of cardiomyocytes (P < 0.001), mRNA expression of ß-myosin heavy chain (ß-MHC) (P < 0.02), ratios of heart weight/body weight and heart weight/tibia length (P < 0.04) and collagen volume fraction (P < 0.001). The LV end-diastolic diameter was reduced, and LV ejection fraction and fractional shortening were improved in MD1-TG-AB mice than in WT-AB mice (P < 0.05). In cultured H9C2 cells, adenovirus vector-mediated MD1 overexpression decreased angiotensin II-induced mRNA expression of brain natriuretic peptide (BNP) and ß-MHC and cell CSA (P < 0.002), whereas knockdown of MD1 by shRNA exhibited opposite effects (P < 0.04). Mechanistically, MD1 suppressed pathological cardiac remodelling at least partly by blocking Akt pathway. Akt inactivation by MK2206 largely offset the pro-hypertrophic effects of MD1 deficiency in angiotensin II-stimulated cardiomyocytes. CONCLUSIONS: The Akt pathway mediates the protective effects of MD1 in pressure overload-induced cardiac remodelling in mice. Targeting MD1 may provide therapeutic strategy for the treatment of pathological cardiac remodelling and heart failure.


Assuntos
Proteínas Proto-Oncogênicas c-akt , Remodelação Ventricular , Animais , Diferenciação Celular , Hipertrofia Ventricular Esquerda , Masculino , Camundongos , Função Ventricular Esquerda
5.
Biochem Biophys Res Commun ; 547: 15-22, 2021 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-33588234

RESUMO

BACKGROUND: Ciliary neurotrophic factor (CNTF), which is a neural peptide, has been reported to confer cardioprotective effects. However, whether CNTF-based gene therapy could prevent cardiac remodelling remains incompletely clear. In this study, we used adeno-associated viral vector serotype 9 (AAV9)-based cardiac gene therapy to test the effects of CNTF overexpression on adverse ventricular remodelling in angiotensin II (Ang II)-infused mice. METHODS: First, AAV9-EGFP and AAV9-CNTF constructs were generated with virus concentration at 5 × 1012 vg/ml. Next, postnatal (P3-P10) mice with C57BL/6J background were administered with 5 × 1011 vg of AAV9 recombinant genome diluted in 50 µl of saline, and delivered through intraperitoneal injection. Implantation of osmotic minipumps was performed in 8-week-old male mice and human Ang II solution was administrated in the mice subcutaneously for 14 days through the pumps. Finally, we evaluated the effects of CNTF overexpression on mouse cardiac function, hypertrophy and fibrosis, as well as investigated the possible mechanisms. RESULTS: Our data showed that CNTF overexpression in mouse cardiomyocytes prevents cardiac hypertrophy and fibrosis induced by chronic Ang II stimulation. Mechanistic study found that CNTF overexpression upregulated NFE2-related factor 2 (Nrf2) antioxidant pathway, coupled with decreased ROS level in the cardiac tissues. Additionally, inflammatory cytokines were found to be reduced upon cardiac CNTF overexpression in response to chronic Ang II stimulation. CONCLUSIONS: Altogether, these results provide further evidence that CNTF can alleviate the condition of cardiac remodelling induced by chronic Ang II stimulation. Therefore, our results suggest a potential therapeutic role of CNTF in cardiac pathological remodelling.


Assuntos
Cardiomegalia/prevenção & controle , Fator Neurotrófico Ciliar/farmacologia , Miócitos Cardíacos/efeitos dos fármacos , Fator 2 Relacionado a NF-E2/metabolismo , Remodelação Ventricular/fisiologia , Angiotensina II/administração & dosagem , Animais , Cardiomegalia/induzido quimicamente , Cardiomegalia/metabolismo , Cardiomegalia/patologia , Modelos Animais de Doenças , Fibrose , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Vasoconstritores/administração & dosagem , Remodelação Ventricular/efeitos dos fármacos
6.
Gene ; 726: 144136, 2020 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-31629817

RESUMO

Chronic systolic heart failure (CSHF) was a complex syndrome. Recently, vagus nerve stimulation (VNS), a novel treatment method, has emerged for the treatment of CSHF. therefore the aim of this study was to explore the possible mechanism of VNS treatment alleviating CSHF in rats. Firstly, we found after VNS treatment for 72 h, the level of B-type natriuretic peptide in VNS group was lower than that in CSHF group. In addition, VNS treatment induced the elevated left ventricular ejection fraction level, reduced left ventricular end diastolic volume and left ventricular end systolic volume level in VNS group, suggesting a mitigation of CSHF by VNS. Then we found the level of miR-183-3p in CSHF group was much lower than that in VNS group by High-throughput sequencing. The further results indicated that Bcl-2 interacting protein 3 like (BNIP3L) was identified as the target gene of miR-183-3p, and the expression of BNIP3L was notably reduced in rats of VNS group compared with CSHF group. Moreover, the down-regulated expression of miR-183-3p increased BNIP3L-mediated autophagy in rats of CSHF group compared with VNS group. Further mechanism findings demonstrated that up-regulation of miR-183-3p reduced the expression of BNIP3L, while down-regulation of miR-183-3p facilitated the expression of BNIP3L in H9c2 cells. miR-183-3p could also regulate autophagy by targeting BNIP3L in vitro, which was manifested by overexpression of miR-183-3p to inhibit BNIP3L-mediated autophagy. Our data demonstrated that VNS treatment benefited CSHF via the up-regulation of miRNA-183-3p, which reduced the BNIP3L-mediated autophagy, providing a new therapeutic direction for CSHF.


Assuntos
Autofagia/genética , Insuficiência Cardíaca Sistólica/genética , Proteínas de Membrana/genética , MicroRNAs/genética , Proteínas Proto-Oncogênicas/genética , Regulação para Cima/genética , Animais , Regulação para Baixo/genética , Masculino , Ratos , Ratos Wistar , Volume Sistólico/genética , Ativação Transcricional/genética , Estimulação do Nervo Vago/métodos , Função Ventricular Esquerda/genética
7.
J Cell Mol Med ; 23(10): 6919-6929, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31441592

RESUMO

The present study investigated the role of long non-coding RNA (lncRNA) small nucleolar RNA host gene 16 (SNHG16) in the human aortic smooth muscle cell (HASMC) proliferation and migration and explored the potential link between SNHG16 and atherosclerosis. Our results showed that platelet-derived growth factor (PDGF)-bb treatment promoted cell proliferation and migration with concurrent up-regulation of SNHG16 in HASMCs. Small nucleolar RNA host gene 16 overexpression promoted HASMC proliferation and migration, while SNHG16 knockdown suppressed cell proliferation and migration in PDGF-bb-stimulated HASMCs. The bioinformatic analyses showed that SNHG16 possessed the complementary binding sequence with miR-205, where the interaction was confirmed by luciferase reporter assay and RNA pull-down assay in HASMCs, and SNHG16 inversely regulated miR-205 expression. MiR-205 overexpression attenuated the enhanced effects of PDGF-bb treatment on HASMC proliferation and migration. Moreover, Smad2 was targeted and inversely regulated by miR-205, while being positively regulated by SNHG16 in HASMCs. Smad2 knockdown attenuated PDGF-bb-mediated actions on HASMC proliferation and migration. Both miR-205 overexpression and Smad2 knockdown partially reversed the effects of SNHG16 overexpression on HASMC proliferation and migration. Moreover, SNHG16 and Smad2 mRNA were up-regulated, while miR-205 was down-regulated in the plasma from patients with atherosclerosis. Small nucleolar RNA host gene 16 expression was inversely correlated with miR-205 expression and positively correlated with Smad2 expression in the plasma from atherosclerotic patients. In conclusion, our data showed the up-regulation of SNHG16 in pathogenic-stimulated HASMCs and clinical samples from atherosclerotic patients. Small nucleolar RNA host gene 16 regulated HASMC proliferation and migration possibly via regulating Smad2 expression by acting as a competing endogenous RNA for miR-205.


Assuntos
Aorta/citologia , Movimento Celular , MicroRNAs/genética , Miócitos de Músculo Liso/citologia , Miócitos de Músculo Liso/metabolismo , RNA Longo não Codificante/metabolismo , Proteína Smad2/metabolismo , Aterosclerose/genética , Aterosclerose/patologia , Sequência de Bases , Becaplermina/farmacologia , Linhagem Celular , Movimento Celular/efeitos dos fármacos , Movimento Celular/genética , Proliferação de Células/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Humanos , MicroRNAs/metabolismo , Miócitos de Músculo Liso/efeitos dos fármacos , RNA Longo não Codificante/genética , Regulação para Cima/efeitos dos fármacos
8.
J Atheroscler Thromb ; 25(3): 244-253, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-28867683

RESUMO

AIMS: Atherosclerosis is the most common cause of cardiovascular disease, such as myocardial infarction and stroke. Previous study revealed that microRNA (miR)-134 promotes lipid accumulation and proinflammatory cytokine secretion through angiopoietin-like 4 (ANGPTL4)/lipid lipoprotein (LPL) signaling in THP-1 macrophages. METHODS: ApoE KO male mice on a C57BL/6 background were fed a high-fat/high-cholesterol Western diet, from 8 to 16 weeks of age. Mice were divided into four groups, and received a tail vein injection of miR-134 agomir, miR-134 antagomir, or one of the corresponding controls, respectively, once every 2 weeks after starting the Western diet. After 8 weeks we measured aortic atherosclerosis, LPL Activity, mRNA and protein levels of ANGPTL4 and LPL, LPL/ low-density lipoprotein receptor related protein 1 Complex Formation, proinflammatory cytokine secretion and lipid levels. RESULTS: Despite this finding, the influence of miR-134 on atherosclerosis in vivo remains to be determined. Using the well-characterized mouse atherosclerosis model of apolipoprotein E knockout, we found that systemic delivery of miR-134 agomir markedly enhanced the atherosclerotic lesion size, together with a significant increase in proinflammatory cytokine secretion and peritoneal macrophages lipid contents. Moreover, overexpression of miR-134 decreased ANGPTL4 expression but increased LPL expression and activity in both aortic tissues and peritoneal macrophages, which was accompanied by increased formation of LPL/low-density lipoprotein receptor-related protein 1 complexes in peritoneal macrophages. However, an opposite effect was observed in response to miR-134 antagomir. CONCLUSIONS: These findings suggest that miR-134 accelerates atherogenesis by promoting lipid accumulation and proinflammatory cytokine secretion via the ANGPTL4/LPL pathway. Therefore, targeting miR-134 may offer a promising strategy for the prevention and treatment of atherosclerotic cardiovascular disease.


Assuntos
Proteína 4 Semelhante a Angiopoietina/sangue , Proteína 4 Semelhante a Angiopoietina/genética , Aterosclerose/genética , MicroRNAs/sangue , MicroRNAs/genética , Animais , Aterosclerose/metabolismo , Colesterol/metabolismo , Citocinas/metabolismo , Células Espumosas/metabolismo , Inflamação , Lipídeos/química , Lipase Lipoproteica/metabolismo , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout para ApoE
9.
Circ J ; 82(1): 28-38, 2017 12 25.
Artigo em Inglês | MEDLINE | ID: mdl-28855441

RESUMO

BACKGROUND: Lipoprotein lipase (LPL) expressed in macrophages plays an important role in promoting the development of atherosclerosis or atherogenesis. MicroRNA-182 (miR-182) is involved in the regulation of lipid metabolism and inflammation. However, it remains unclear how miR-182 regulates LPL and atherogenesis.Methods and Results:Using bioinformatics analyses and a dual-luciferase reporter assay, we identified histone deacetylase 9 (HDAC9) as a target gene of miR-182. Moreover, miR-182 upregulated LPL expression by directly targetingHDAC9in THP-1 macrophages. Hematoxylin-eosin (H&E), Oil Red O and Masson's trichrome staining showed that apolipoprotein E (ApoE)-knockout (KO) mice treated with miR-182 exhibited more severe atherosclerotic plaques. Treatment with miR-182 increased CD68 and LPL expression in atherosclerotic lesions in ApoE-KO mice, as indicated by double immunofluorescence staining in the aortic sinus. Increased miR-182-induced increases in LPL expression in ApoE-KO mice was confirmed by real-time quantitative polymerase chain reaction and western blotting analyses. Treatment with miR-182 also increased plasma concentrations of proinflammatory cytokines and lipids in ApoE-KO mice. CONCLUSIONS: The results of the present study suggest that miR-182 upregulates LPL expression, promotes lipid accumulation in atherosclerotic lesions, and increases proinflammatory cytokine secretion, likely through targetingHDAC9, leading to an acceleration of atherogenesis in ApoE-KO mice.


Assuntos
Aterosclerose/induzido quimicamente , Lipase Lipoproteica/efeitos dos fármacos , MicroRNAs/farmacologia , Proteínas Repressoras/antagonistas & inibidores , Animais , Biologia Computacional , Citocinas/efeitos dos fármacos , Células HEK293 , Histona Desacetilases , Humanos , Inflamação/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos , Macrófagos , Camundongos , Camundongos Knockout para ApoE , Células THP-1
10.
Acta Biochim Biophys Sin (Shanghai) ; 48(4): 363-70, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26922321

RESUMO

Macrophage-activating lipopeptide-2 (MALP-2) has been shown to promote the development of atherosclerosis. ATP-binding cassette transporter A1 (ABCA1), a transmembrane protein, plays a critical role in mediating cholesterol export from macrophages to apolipoprotein A-I (apoA-I). However, whether MALP-2 can regulate the expression of ABCA1 is still largely unknown. The aim of this study was to explore the effects of MALP-2 on ABCA1 expression in THP-1 macrophages and the underlying mechanisms. Our results showed that the treatment of cells with MALP-2 decreased ABCA1 level and suppressed cholesterol efflux in both concentration- and time-dependent manners. The contents of intracellular cholesterol were significantly increased in the presence of MALP-2. Moreover, MALP-2-mediated inhibition of ABCA1 expression was abolished by siRNA of either Toll-like receptor 2 (TLR2) or nuclear factor κB (NF-κB). A similar effect was produced by treatment with the NF-κB inhibitor pyrrolidine dithiocarbamate. In addition, MALP-2-induced activation of NF-κB markedly increased zinc finger protein 202 (ZNF202) level, and ZNF202 siRNA impaired the effects of MALP-2 on ABCA1 expression. Taken together, these results suggest that MALP-2 can decrease ABCA1 expression and subsequent cholesterol efflux through activation of the TLR2/NF-κB/ZNF202 signaling pathway in THP-1 macrophages.


Assuntos
Transportador 1 de Cassete de Ligação de ATP/metabolismo , Regulação para Baixo/efeitos dos fármacos , Lipopeptídeos/farmacologia , Macrófagos/metabolismo , NF-kappa B/metabolismo , Proteínas Repressoras/metabolismo , Receptor 2 Toll-Like/metabolismo , Transporte Biológico , Linhagem Celular , Colesterol/metabolismo , Humanos
11.
Mol Med Rep ; 12(3): 3599-3606, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26017812

RESUMO

Oxidized low­density lipoprotein (ox­LDL) can increase the expression of adipophilin and the accumulation of intracellular lipid droplets. However, the detailed mechanisms remain to be fully elucidated. The present study aimed to investigate the mechanism underlying the effect of ox­LDL on the expression of adipophilin and the accumulation of intracellular cholesterol esters. The results revealed that ox­LDL increased the activation of protein kinase C α (PKCα), expression of adipophilin and acyl­coenzymeA: cholesterol acyltransferse 1 (ACAT1) and increased accumulation of intracellular cholesterol esters. In addition, PKCα siRNA abrogated ox­LDL­induced adipophilin, expression of ATAC1 and accumulation of cholesterol esters. Furthermore, ox­LDL increased the accumulation of intracellular cholesterol esters and expression of ACAT1, and this effect were reversed by transfection with adipophilin siRNA. Taken together, these results demonstrated that ox­LDL induces the accumulation of cholesterol esters, which is mediated by the PKCα­adipophilin­ACAT1 pathway.


Assuntos
Acetil-CoA C-Acetiltransferase/metabolismo , Ésteres do Colesterol/metabolismo , Lipoproteínas LDL/metabolismo , Macrófagos/metabolismo , Proteínas de Membrana/metabolismo , Proteína Quinase C-alfa/metabolismo , Acetil-CoA C-Acetiltransferase/genética , Animais , Regulação da Expressão Gênica , Proteínas de Membrana/genética , Camundongos , Perilipina-2 , Proteína Quinase C-alfa/genética , Células RAW 264.7 , Interferência de RNA , RNA Interferente Pequeno/genética , Transdução de Sinais
12.
Circ J ; 78(11): 2760-70, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25262842

RESUMO

BACKGROUND: Both clinical data and basic science studies suggest that advanced oxidation protein products (AOPPs) may contribute to the progression of atherosclerosis. The aim of this study was to investigate the effects of AOPPs on ATP-binding cassette transporter (ABC) A1 and ABCG1 expression, lipid accumulation and atherosclerotic lesions in apolipoprotein E knockout (apoE-KO) mice. METHODS AND RESULTS: Male 8-week-old apoE-KO mice were fed a high-fat/high-cholesterol diet. Mice received intraperitoneal injections of AOPPs (5 mg/kg) and/or Janus Kinase (JAK) inhibitor AG-490 (5 mg/kg) once every other day for 8 weeks. As shown in our data, AOPPs increased lipid levels of plasma, and promoted advanced lesions in the aortic regions in apoE-KO mice. The ABCA1, ABCG1 and liver X receptor alpha (LXRα) expression were downregulated in apoE-KO mice treated with AOPPs, whereas the lesions in the aortas were decreased, and the ABCA1, ABCG1 and LXRα expression were upregulated in mice treated with AOPPs plus AG-490, compared to the mice treated with AOPPs only. The ABCA1 and LXRα expressions of aortas, liver and intestine were downregulated in the AOPPs group, while the expressions were upregulated in the AOPPs-plus-AG-490 group when compared to the AOPPs group. The same results can be also observed in peritoneal macrophages. CONCLUSIONS: AOPPs increase accumulation of lipids and exacerbate atherosclerosis through downregulation of ABCA1 and ABCG1 expression, and the JAK-LXRα signaling pathway in apoE-KO mice.


Assuntos
Transportador 1 de Cassete de Ligação de ATP/biossíntese , Transportadores de Cassetes de Ligação de ATP/biossíntese , Produtos da Oxidação Avançada de Proteínas/metabolismo , Apolipoproteínas E/genética , Aterosclerose/metabolismo , Regulação para Baixo , Metabolismo dos Lipídeos , Lipoproteínas/biossíntese , Transportador 1 de Cassete de Ligação de ATP/genética , Membro 1 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Transportadores de Cassetes de Ligação de ATP/genética , Produtos da Oxidação Avançada de Proteínas/genética , Animais , Aterosclerose/genética , Lipoproteínas/genética , Masculino , Camundongos , Camundongos Knockout
13.
Atherosclerosis ; 236(1): 215-26, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25084135

RESUMO

RATIONALE: Macrophage accumulation of cholesterol leads to foam cell formation which is a major pathological event of atherosclerosis. Recent studies have shown that microRNA (miR)-19b might play an important role in cholesterol metabolism and atherosclerotic diseases. Here, we have identified miR-19b binding to the 3'UTR of ATP-binding cassette transporter A1 (ABCA1) transporters, and further determined the potential roles of this novel interaction in atherogenesis. OBJECTIVE: To investigate the molecular mechanisms involved in a miR-19b promotion of macrophage cholesterol accumulation and the development of aortic atherosclerosis. METHODS AND RESULTS: We performed bioinformatics analysis using online websites, and found that miR-19b was highly conserved during evolution and directly bound to ABCA1 mRNA with very low binding free energy. Luciferase reporter assay confirmed that miR-19b bound to 3110-3116 sites within ABCA1 3'UTR. MiR-19b directly regulated the expression levels of endogenous ABCA1 in foam cells derived from human THP-1 macrophages and mouse peritoneal macrophages (MPMs) as determined by qRT-PCR and western blot. Cholesterol transport assays revealed that miR-19b dramatically suppressed apolipoprotein AI-mediated ABCA1-dependent cholesterol efflux, resulting in the increased levels of total cholesterol (TC), free cholesterol (FC) and cholesterol ester (CE) as revealed by HPLC. The excretion of (3)H-cholesterol originating from cholesterol-laden MPMs into feces was decreased in mice overexpressing miR-19b. Finally, we evaluated the proatherosclerotic role of miR-19b in apolipoprotein E deficient (apoE(-/-)) mice. Treatment with miR-19b precursor reduced plasma high-density lipoprotein (HDL) levels, but increased plasma low-density lipoprotein (LDL) levels. Consistently, miR-19b precursor treatment increased aortic plaque size and lipid content, but reduced collagen content and ABCA1 expression. In contrast, treatment with the inhibitory miR-19b antisense oligonucleotides (ASO) prevented or reversed these effects. CONCLUSION: MiR-19b promotes macrophage cholesterol accumulation, foam cell formation and aortic atherosclerotic development by targeting ABCA1.


Assuntos
Transportador 1 de Cassete de Ligação de ATP/antagonistas & inibidores , Doenças da Aorta/etiologia , Aterosclerose/etiologia , Colesterol/metabolismo , Macrófagos/metabolismo , MicroRNAs/fisiologia , Transportador 1 de Cassete de Ligação de ATP/genética , Transportador 1 de Cassete de Ligação de ATP/fisiologia , Animais , Doenças da Aorta/genética , Doenças da Aorta/metabolismo , Apolipoproteína A-I/metabolismo , Apolipoproteínas E/deficiência , Aterosclerose/genética , Aterosclerose/metabolismo , Sequência de Bases , Linhagem Celular , Ésteres do Colesterol/metabolismo , Colágeno/análise , Células Espumosas/metabolismo , Macrófagos Peritoneais/metabolismo , Masculino , Camundongos , Camundongos Knockout , Dados de Sequência Molecular , Placa Aterosclerótica/metabolismo , RNA Mensageiro/metabolismo , Homologia de Sequência do Ácido Nucleico
14.
Biochimie ; 106: 81-90, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25149060

RESUMO

BACKGROUND: Accumulating evidence suggests that microRNA-590 (miR-590) has protective effects on cardiovascular diseases, but the mechanism is unknown. Interestingly, previous studies from our laboratory and others have shown that macrophage-derived lipoprotein lipase (LPL) might accelerate atherosclerosis by promoting lipid accumulation and inflammatory response. However, the regulation of LPL at the post-transcriptional level by microRNAs has not been fully understood. In this study, we explored whether miR-590 affects the expression of LPL and its potential subsequent effects on lipid accumulation and pro-inflammatory cytokine secretion in human THP-1 macrophages. METHODS AND RESULTS: Using bioinformatics analyses and dual-luciferase reporter assays, we found that miR-590 directly inhibited LPL protein and mRNA expression by targeting LPL 3'UTR. LPL Activity Assays showed that miR-590 reduced LPL activity in the culture media. Oil Red O staining and high-performance liquid chromatography assays showed that miR-590 had inhibitory effects on the lipid accumulation in human THP-1 macrophages. We also illustrated that miR-590 alleviated pro-inflammatory cytokine secretion in human THP-1 macrophages as measured by ELISA. With the method of small interfering RNA, we found that LPL siRNA can inhibit the miR-590 inhibitor-induced increase in lipid accumulation and secretion of pro-inflammatory cytokines in oxLDL-treated human THP-1 macrophages. CONCLUSIONS: MiR-590 attenuates lipid accumulation and pro-inflammatory cytokine secretion by targeting LPL gene in human THP-1 macrophages. Therefore, targeting miR-590 may offer a promising strategy to treat atherosclerotic cardiovascular diseases.


Assuntos
Citocinas/metabolismo , Lipídeos/análise , Lipase Lipoproteica/genética , Macrófagos/metabolismo , MicroRNAs/genética , Regiões 3' não Traduzidas/genética , Sequência de Bases , Western Blotting , Linhagem Celular Tumoral , Expressão Gênica , Células HEK293 , Humanos , Mediadores da Inflamação/metabolismo , Lipase Lipoproteica/metabolismo , Lipoproteínas LDL/farmacologia , Macrófagos/efeitos dos fármacos , Interferência de RNA , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Homologia de Sequência do Ácido Nucleico
15.
Atherosclerosis ; 235(2): 519-25, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24953492

RESUMO

OBJECTIVES: ATP-binding cassette transporter A1 (ABCA1) is critical in exporting cholesterol from macrophages and plays a protective role in the development of atherosclerosis. This study was to determine the effects and potential mechanisms of Chlamydia pneumoniae (C. pneumoniae) on ABCA1 expression and cellular cholesterol efflux in THP-1 macrophage-derived foam cells. METHODS AND RESULTS: C. pneumoniae significantly decreased the expression of ABCA1 and reduced cholesterol efflux. Furthermore, we found that C. pneumoniae suppressed ABCA1 expression via up-regulation of miR-33s. The inhibition of C. pneumoniae-induced NF-κB activation decreased miR-33s expression and enhanced ABCA1 expression. In addition, C. pneumoniae increased Toll-like receptor 2 (TLR2) expressions, inhibition of which by siRNA could also block NF-κB activation and miR-33s expression, and promot the expression of ABCA1. CONCLUSION: Taken together, these results reveal that C. pneumoniae may negatively regulate ABCA1 expression via TLR2-NF-κB and miR-33 pathways in THP-1 macrophage-derived foam cells, which may provide new insights for understanding the effects of C. pneumoniae on the pathogenesis of atherosclerosis.


Assuntos
Transportador 1 de Cassete de Ligação de ATP/biossíntese , Chlamydophila pneumoniae/fisiologia , Células Espumosas/metabolismo , MicroRNAs/fisiologia , NF-kappa B/fisiologia , Receptor 2 Toll-Like/fisiologia , Colesterol/metabolismo , Células Espumosas/microbiologia , Humanos , Macrófagos/metabolismo
16.
Atherosclerosis ; 234(1): 54-64, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24608080

RESUMO

RATIONALE: Macrophage cholesterol homeostasis maintenance is the result of a balance between influx, endogenous synthesis, esterification/hydrolysis and efflux. Excessive accumulation of cholesterol leads to foam cell formation, which is the major pathology of atherosclerosis. Previous studies have shown that miR-27 (miR-27a and miR-27b) may play a key role in the progression of atherosclerosis. OBJECTIVE: We set out to investigate the molecular mechanisms of miR-27a/b in intracellular cholesterol homeostasis. METHODS AND RESULTS: In the present study, our results have shown that the miR-27 family is highly conserved during evolution, present in mammals and directly targets the 3' UTR of ABCA1, LPL, and ACAT1. apoA1, ABCG1 and SR-B1 lacking miR-27 bind sites should not be influenced by miR-27 directly. miR-27a and miR-27b directly regulated the expression of endogenous ABCA1 in different cells. Treatment with miR-27a and miR-27b mimics reduced apoA1-mediated cholesterol efflux by 33.08% and 44.61% in THP-1 cells, respectively. miR-27a/b also regulated HDL-mediated cholesterol efflux in THP-1 macrophages and affected the expression of apoA1 in HepG2 cells. However, miR-27a/b had no effect on total cellular cholesterol accumulation, but regulated the levels of cellular free cholesterol and cholesterol ester. We further found that miR-27a/b regulated the expression of LPL and CD36, and then affected the ability of THP-1 macrophages to uptake Dil-oxLDL. Finally, we identified that miR-27a/b regulated cholesterol ester formation by targeting ACAT1 in THP-1 macrophages. CONCLUSION: These findings indicate that miR-27a/b affects the efflux, influx, esterification and hydrolysis of cellular cholesterol by regulating the expression of ABCA1, apoA1, LPL, CD36 and ACAT1.


Assuntos
Colesterol/metabolismo , Macrófagos/metabolismo , MicroRNAs/fisiologia , Células Cultivadas , Esterificação , Humanos , Hidrólise
17.
Clin Chim Acta ; 428: 1-8, 2014 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-24055369

RESUMO

Apelin is an adipokine that has been identified as an endogenous ligand for the orphan receptor APJ. Apelin and APJ are expressed in a diverse range of tissues with particular preponderance for the heart and vasculature. Apelin has powerful positive inotropic actions and causes endothelium- and nitric oxide-dependent vasodilatation. Growing evidence shows that apelin/APJ system functions as a critical mediator of cardiovascular homeostasis and is involved in the pathophysiology of cardiovascular diseases. Targeting apelin/APJ axis produces protection against cardiovascular diseases. In the current review we have summarized recent data concerning the role and therapeutic potential of apelin/APJ in several major cardiovascular diseases. An increased understanding of the cardiovascular actions of apelin/APJ system will help to develop novel therapeutic interventions for cardiovascular diseases.


Assuntos
Doenças Cardiovasculares/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Apelina , Humanos
18.
Biochem Biophys Res Commun ; 443(2): 428-34, 2014 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-24309104

RESUMO

Atherosclerosis is a lipid disorder disease characterized by chronic blood vessel wall inflammation driven by the subendothelial accumulation of macrophages. Studies have shown that lipoprotein lipase (LPL) participates in lipid metabolism, but it is not yet known whether post-transcriptional regulation of LPL gene expression by microRNAs (miRNAs) occurs in vivo. Here, we tested that miR-467b provides protection against atherosclerosis by regulating the target gene LPL which leads to reductions in LPL expression, lipid accumulation, progression of atherosclerosis and production of inflammatory cytokines in apolipoprotein E knockout (apoE(-/-)) mice. Treatment of apoE(-/-) mice with intra-peritoneal injection of miR-467b agomir led to decreased blood plasma levels of total cholesterol (TC), triglyceride (TG), low density lipoprotein cholesterol (LDL-C), high density lipoprotein cholesterol (HDL-C), tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), IL-1ß and monocyte chemotactic protein-1 (MCP-1). Using Western blots and real time PCR, we determined that LPL expression in aorta and abdominal cavity macrophages were significantly down-regulated in the miR-467b agomir group. Furthermore, systemic treatment with miR-467b antagomir accelerated the progression of atherosclerosis in the aorta of apoE(-/-) mice. The present study showed that miR-467b protects apoE(-/-) mice from atherosclerosis by reducing lipid accumulation and inflammatory cytokine secretion via downregulation of LPL expression. Therefore, targeting miR-467b may offer a promising strategy to treat atherosclerotic vascular disease.


Assuntos
Apolipoproteínas E/genética , Aterosclerose/imunologia , Citocinas/imunologia , Inflamação/imunologia , Metabolismo dos Lipídeos/imunologia , Lipase Lipoproteica/imunologia , MicroRNAs/farmacologia , Animais , Aterosclerose/prevenção & controle , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Inflamação/prevenção & controle , Metabolismo dos Lipídeos/efeitos dos fármacos , Lipase Lipoproteica/biossíntese , Masculino , Camundongos , Camundongos Knockout , Resultado do Tratamento
20.
Biochimie ; 94(12): 2749-55, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22963823

RESUMO

LPL (lipoprotein lipase) is a rate-limiting enzyme involved in the hydrolysis of triglycerides. Previous studies have shown that microRNA (miR)-467b regulates hepatic LPL expression and plays a role in the progression of steatosis or abnormal lipid retention in obese mice. Macrophage-derived LPL has been shown to promote atherosclerosis. However, if miR-476b influences macrophage LPL expression and the subsequent effects are unknown. Here, we utilized oxLDL-treatment RAW 264.7 macrophages that were transfected with miR-467b mimics or inhibitors to investigate the potential roles of macrophage miR-476b. We found that miR-467b significantly decreased lipid accumulation and IL-6, IL-1ß, TNF-α and MCP-1 secretions. Furthermore, our studies suggested an additional explanation for the regulatory mechanism of miR-467b on its functional target, LPL in RAW 264.7 macrophages. Thus, our findings indicate that miR-467b may regulate lipid accumulation and proinflammatory cytokine secretion in oxLDL-stimulated RAW 264.7 macrophages by targeting the LPL gene.


Assuntos
Citocinas/metabolismo , Lipídeos/análise , Lipase Lipoproteica/genética , Macrófagos/metabolismo , MicroRNAs/genética , Regiões 3' não Traduzidas/genética , Animais , Sequência de Bases , Western Blotting , Linhagem Celular , Quimiocina CCL2/metabolismo , Cromatografia Líquida de Alta Pressão , Células HEK293 , Humanos , Mediadores da Inflamação/metabolismo , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos , Lipase Lipoproteica/metabolismo , Lipoproteínas LDL/farmacologia , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Camundongos , MicroRNAs/metabolismo , Interferência de RNA , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Homologia de Sequência do Ácido Nucleico , Fator de Necrose Tumoral alfa/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...