Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 9(37): eadi5104, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37713483

RESUMO

As the most promising candidates for the implementation of in-sensor computing, retinomorphic vision sensors can constitute built-in neural networks and directly implement multiply-and-accumulation operations using responsivities as the weights. However, existing retinomorphic vision sensors mainly use a sustained gate bias to maintain the responsivity due to its volatile nature. Here, we propose an ion-induced localized-field strategy to develop retinomorphic vision sensors with nonvolatile tunable responsivity in both positive and negative regimes and construct a broadband and reconfigurable sensory network with locally stored weights to implement in-sensor convolutional processing in spectral range of 400 to 1800 nanometers. In addition to in-sensor computing, this retinomorphic device can implement in-memory computing benefiting from the nonvolatile tunable conductance, and a complete neuromorphic visual system involving front-end in-sensor computing and back-end in-memory computing architectures has been constructed, executing supervised and unsupervised learning tasks as demonstrations. This work paves the way for the development of high-speed and low-power neuromorphic machine vision for time-critical and data-intensive applications.

2.
ACS Appl Mater Interfaces ; 14(19): 22626-22633, 2022 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-35522991

RESUMO

Tuning the thermal properties of materials is considered to be of crucial significance for improving the performance of electronic devices. Along these lines, the development of van der Waals (vdW) heterostructures becomes an effective solution to affect the thermal transport mechanisms. However, vdW interactions usually block phonon transport, which leads to a reduction in thermal conductivity. In this work, we experimentally demonstrate a large enhancement in the thermal conductivity of a vdW heterostructure composed of few-layer hexagonal boron nitride (h-BN) and reduced graphene oxide (RGO). By controlling the reduction temperature of RGO and changing the thickness of h-BN, the thermal conductivity of the RGO is increased by nearly 18 times, namely, from 91 to 1685 W m-1 K-1. Photothermal scanning imaging is used to reveal the changes in the heat transfer and temperature distribution of the h-BN/RGO heterostructure. Both photothermal scanning and Raman spectroscopy experiments show that the vdW interaction between h-BN and RGO can greatly increase the thermal conductivity of RGO, which is in contrast to the conventional understanding that vdW interaction reduces thermal conductivity. Our work paves the way for the manipulation of the thermal conductivity of two-dimensional (2D) heterostructures, which could be of great significance for future nanoelectronic circuits.

3.
Small Methods ; 5(12): e2101302, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34928034

RESUMO

Thermal management plays an important role in miniaturized and integrated nanoelectronic devices, where finding ways to enable efficient heat-dissipation can be critical. 2D materials, especially graphene and hexagonal boron nitride (h-BN), are generally regarded as ideal materials for thermal management due to their high inherent thermal conductivity. In this paper, a new method is reported, which can be used to characterize thermal transport in 2D materials. The separation of pumping from detection can obtain the temperature at different distances from the heat source, which makes it possible to study the heat distribution of 2D materials. Using this method, the thermal conductivity of graphene and molybdenum disulfide is measured, and the thermal diffusion for different shapes of graphene is explored. It is found that thermal transport in graphene changes when the surrounding environment changes. In addition, thermal transport is restricted at the boundary. These processes are accurately simulated using the finite element method, and the simulated results agree well with the experiment. Furthermore, by depositing a layer of h-BN on graphene, the heat-dissipation characteristics of graphene become tunable. This study introduces and describes a new method to investigate and optimize thermal management in 2D materials.

4.
Phys Chem Chem Phys ; 23(36): 20666-20674, 2021 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-34515274

RESUMO

Recently, palladium diselenide (PdSe2) has emerged as a promising material with potential applications in electronic and optoelectronic devices due to its intriguing electronic and optical properties. The performance of the device is strongly dependent on the charge-carrier dynamics and the related hot phonon behavior. Here, we investigate the photoexcited-carrier dynamics and coherent acoustic phonon (CAP) oscillations in mechanically exfoliated PdSe2 flakes with a thickness ranging from 10.6 nm to 54 nm using time-resolved non-degenerate pump-probe transient reflection (TR) spectroscopy. The results imply that the CAP frequency is thickness-dependent. Polarization-resolved transient reflection (PRTR) measurements reveal the isotropic charge-carrier relaxation dynamics and the CAP frequency in the 10.6 nm region. In addition, the deformation potential (DP) mechanism dominates the generation of the CAP. Moreover, a sound velocity of 6.78 × 103 m s-1 is extracted from the variation of the oscillation period with the flake thickness and the delay time of the acoustic echo. These results provide insight into the ultrafast optical coherent acoustic phonon and optoelectronic properties of PdSe2 and may open new possibilities for PdSe2 applications in THz-frequency mechanical resonators.

5.
J Phys Chem Lett ; 12(19): 4755-4761, 2021 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-33983036

RESUMO

Black phosphorus (BP) is a typical two-dimensional (2D) layered material with strong in-plane anisotropy and large birefringence, making it possible to manipulate the light field with atomically controlled devices for various optoelectronic and photonic applications-for instance, atomic thickness waveplates. The twist angle in twisted black phosphorus (TBP) can be presented as a new tunable dimension to control BP's optical anisotropy. Here, we report a large and tunable optical rotation effect in TBP, the result of regulating the twist angle and BP thickness. To accurately study the optical rotation and the impact of the twist angle, we developed a new method to prepare TBP. A lab-made polarimeter microscope was used to visualize the optical rotation mapping of TBP. A large polarization-plane rotation (PORA) of 0.49° per atomic layer was observed from an air/BP/SiO2/Si Fabry-Pérot cavity at 600 nm, an order of magnitude higher than the PORA of 0.05° per atomic layer reported earlier. For the same thickness, the PORA of TBP can be tuned from 0.48° to 7.75° based on the twist angle from 0° to 90°. Our work provides an efficient method to investigate the anisotropy of 2D materials and their heterojunctions. TBP could help us design novel optical and optoelectronic devices such as tunable nanoscale polarization controllers.

6.
ACS Appl Mater Interfaces ; 13(18): 21573-21581, 2021 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-33929842

RESUMO

Strain engineering is the most effective method to break the symmetry of the graphene lattice and achieve graphene band gap tunability. However, a critical strain (>20%) is required to open the graphene band gap, and it is very difficult to achieve such a large strain. This limits the development of experimental research and optoelectronic devices based on graphene strain. In this work, we report a method for preparing large-strain graphene superlattices via surface energy engineering. The maximum strain of the curved lattice could reach 50%. In particular, our pioneering work reports the behavior of an ultrafast (as short as 6 ps) photoresponse in a strained folded graphene superlattice. The photocurrent map shows a large increase (up to 102) of the photoresponsivity in the tensile graphene lattice, which is generated by the interaction between the strained and pristine graphene. Through Raman spectroscopy, Kelvin probe force microscopy, and high-resolution transmission electron microscopy, we demonstrate that the ultrathreshold strain in the graphene bends triggers the opening of the graphene band gap and results in a unique photovoltaic effect. This work deepens the understanding of the strain-induced change of the photoelectrical properties of graphene and proves the potential of strained graphene as a platform for the generation of novel high-speed, miniaturized graphene-based photodetectors.

7.
Nanoscale Adv ; 3(11): 3114-3123, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-36133646

RESUMO

The optical signals (such as Raman scattering, absorption, reflection) of van der Waals heterostructures (vdWHs) are very important for structural analysis and the application of optoelectronic devices. However, there is still a lack of research on the effect of each layer of two-dimensional materials on the optical signals of vdWHs. Here, we investigated the contribution from different layers to the optical signal of vdWHs by using angle-resolved polarized Raman spectroscopy (ARPRS) and angle-dependent reflection spectroscopy. A suitable theoretical model for the optical signal of vdWHs generated by different layers was developed, and vdWHs stacked by different two-dimensional (2D) materials were analyzed. The results revealed a strong dependence of the relative strengths of the optical signals of the upper and lower layers on the thicknesses of 2D materials and the SiO2 layer on the Si/SiO2 substrate. Interestingly, on the 285 nm SiO2/Si substrate, the contribution to the optical signal by the underlying 2D material was much greater than that by the upper layer. Furthermore, optical signals originating from different layers of twisted black phosphorus (BP) for different twist angles were studied. There is great significance for optical spectroscopy to study vdWHs, as well as the development of better twisted 2D materials and moiré physics.

8.
Small ; 16(50): e2003593, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33230902

RESUMO

Achieving multifunctional van der Waals nanoelectronic devices on one structure is essential for the integration of 2D materials; however, it involves complex architectural designs and manufacturing processes. Herein, a facile, fast, and versatile laser direct write micro/nanoprocessing to fabricate diode, NPN (PNP) bipolar junction transistor (BJT) simultaneously based on a pre-fabricated black phosphorus/molybdenum disulfide heterostructure is demonstrated. The PN junctions exhibit good diode rectification behavior. Due to different carrier concentrations of BP and MoS2 , the NPN BJT, with a narrower base width, renders better performance than the PNP BJT. Furthermore, the current gain can be modulated efficiently through laser writing tunable base width WB , which is consistent with the theoretical results. The maximum gain for NPN and PNP is found to be ≈41 (@WB ≈600 nm) and ≈12 (@WB ≈600 nm), respectively. In addition, this laser write processing technique also can be utilized to realize multifunctional WSe2 /MoS2 heterostructure device. The current work demonstrates a novel, cost-effective, and universal method to fabricate multifunctional nanoelectronic devices. The proposed approach exhibits promise for large-scale integrated circuits based on 2D heterostructures.

9.
J Phys Chem Lett ; 11(13): 5059-5067, 2020 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-32513011

RESUMO

Applied strain introduces significant changes in the carbon-carbon bond of graphene and thereby forms electronic superlattices. The electron/phonon coupling and existence of pseudogauge fields within these superlattices render unique electronic and magnetism properties. However, the interfacial interactions between strained and pristine graphene have rarely been studied. Herein, we report a prominent increase in photocurrent at the interface between pristine graphene and the strain-induced superlattice (i.e., the graphene wrinkle). The photocurrent distribution indicates a large increase in the bending lattice of graphene. These results demonstrate that the photocurrent enhancement is due to the difference in the Seebeck coefficient between pristine graphene and deformed superlattices, resulting in a significant increase in the photothermoelectric effect at the interface.

10.
Nanoscale Adv ; 2(4): 1733-1740, 2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-36132297

RESUMO

Two-dimensional (2D) bipolar junction transistors (BJTs) with van der Waals heterostructures play an important role in the development of future nanoelectronics. Herein, a convenient method is introduced for fabricating a symmetric bipolar junction transistor (SBJT), constructed from black phosphorus and MoS2, with femtosecond laser processing. This SBJT exhibits good bidirectional current amplification owing to its symmetric structure. We placed a top gate on one side of the SBJT to change the difference in the major carrier concentration between the emitter and collector in order to further investigate the effects of electrostatic doping on the device performance. The SBJT can also act as a gate-tunable phototransistor with good photodetectivity and photocurrent gain of ß = ∼21. Scanning photocurrent images were used to determine the mechanism governing photocurrent amplification in the phototransistor. These results promote the development of the applications of multifunctional nanoelectronics based on 2D materials.

11.
ACS Appl Mater Interfaces ; 10(41): 35615-35622, 2018 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-30251829

RESUMO

van der Waals p-n heterostructures based on p-type black phosphorus (BP) integrated with other two-dimensional (2D) layered materials have shown potential applications in electronic and optoelectronic devices, including logic rectifiers and polarization-sensitive photodetectors. However, the engineering of carriers transport anisotropy, which is related to the linear dichroism, have not yet been investigated. Here, we demonstrate a novel van der Waals device of orientation-perpendicular BP homojunction based on the anisotropic band structures between the armchair and zigzag directions. The structure exhibits good gate-tunable diode-like rectification characteristics caused by the barrier between the two perpendicular crystal orientations. Moreover, we demonstrate that the unique mechanisms of the polarization-sensitivity properties of this junction are involved with the linear dichroism and the anisotropic carriers transport engineering. These results were verified by the scanning photocurrent images experiments. This work paves the way for 2D anisotropic layered materials for next-generation electronic and optoelectronic devices.


Assuntos
Fósforo/química , Anisotropia
12.
Nanoscale ; 10(23): 10844-10849, 2018 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-29854996

RESUMO

Manipulating the polarization of an incident beam using two-dimensional materials has become an important research direction towards the development of nano-optical devices. Black phosphorus (BP) and rhenium diselenide (ReSe2) possess excellent in-plane optical anisotropy with optical birefringence in the visible region, which has led to novel applications in polarizing optics and optoelectronics. Herein, the polarization-dependent absorption of BP and ReSe2 and a modulated pump beam is utilized to obtain the photothermal signal from them. The photothermal anisotropy of BP and ReSe2 has been explored using photothermal detection. Then we have defined the photothermal contrast using the ratio of the maximum to the minimum of the photothermal signal. The photothermal contrast of BP and ReSe2 can be obtained accurately by the relationship between the polarization angle of the pump light and the photothermal signal. We demonstrate that a layered BP with different thicknesses can remarkably change the photothermal contrast. In contrast, the photothermal contrast of ReSe2 does not change with the different thicknesses of the samples. Further, the photothermal anisotropies of BP/ReSe2 heterostructures were also explored. The photothermal contrasts of samples were observed to change with different stacking angles indicating that the photothermal anisotropy of heterostructures is dependent on the stacking angle. Our findings provide new prospects for designing novel optical devices based on two-dimensional anisotropic materials, with potential applications in electronics, photonics, and optoelectronics.

13.
Adv Mater ; 30(2)2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29168903

RESUMO

Despite many decades of research of diodes, which are fundamental components of electronic and photoelectronic devices with p-n or Schottky junctions using bulk or 2D materials, stereotyped architectures and complex technological processing (doping and multiple material operations) have limited future development. Here, a novel rectification device, an orientation-induced diode, assembled using only few-layered black phosphorus (BP) is investigated. The key to its realization is to utilize the remarkable anisotropy of BP in low dimensions and change the charge-transport conditions abruptly along the different crystal orientations. Rectification ratios of 6.8, 22, and 115 can be achieved in cruciform BP, cross-stacked BP junctions, and BP junctions stacked with vertical orientations, respectively. The underlying physical processes and mechanisms can be explained using "orientation barrier" band theory. The theoretical results are experimentally confirmed using localized scanning photocurrent imaging. These orientation-induced optoelectronic devices open possibilities for 2D anisotropic materials with a new degree of freedom to improve modulation in diodes.

14.
Opt Express ; 26(26): 33895-33905, 2018 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-30650821

RESUMO

The ultrafast nonlinear optical properties of bulk TlGaS2 crystal, a semiconductor with a layered structure, are studied by combining intensity dependent transmission, time-resolved transient absorption, and optical Kerr effect coupled to optical heterodyne detection. TlGaS2 demonstrates obvious two-photon absorption and electronic nonlinearities at 800 nm. The two-photon absorption coefficient and the nonlinear refractive index are determined to be of the order of 10-10 cm/W and 10-14 cm2/W, respectively. Furthermore, both the real and imaginary parts of the complex third-order susceptibility tensor elements are extracted. The large ultrafast optical nonlinearities make TlGaS2 a promising material for application in photonic techniques.

15.
Sensors (Basel) ; 17(2)2017 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-28125011

RESUMO

Protein-protein interactions play an important role in the investigation of biomolecules. In this paper, we reported on the use of a reduced graphene oxide microshell (RGOM)-based optical biosensor for the determination of goat anti-rabbit IgG. The biosensor was prepared through a self-assembly of monolayers of monodisperse polystyrene microspheres, combined with a high-temperature reduction, in order to decorate the RGOM with rabbit IgG. The periodic microshells allowed a simpler functionalization and modification of RGOM with bioreceptor units, than reduced graphene oxide (RGO). With additional antibody-antigen binding, the RGOM-based biosensor achieved better real-time and label-free detection. The RGOM-based biosensor presented a more satisfactory response to goat anti-rabbit IgG than the RGO-based biosensor. This method is promising for immobilizing biomolecules on graphene surfaces and for the fabrication of biosensors with enhanced sensitivity.


Assuntos
Técnicas Biossensoriais , Animais , Anticorpos , Grafite , Óxidos , Coelhos
16.
Adv Mater ; 29(1)2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27805741

RESUMO

A unique ethanol-precursor-based LPCVD route is developed for the fast (4 min, improved 20 times) and scalable (25 inch, improved six times) growth of high-quality graphene glass. The obtained graphene glass presents high uniformity across large areas and is demonstrated to be an excellent material for constructing switchable windows and biosensor devices, owing to its excellent transparency and conductivity.

17.
J Biomed Opt ; 21(8): 86016, 2016 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-27564318

RESUMO

We report the quantitative refractive index (RI) imaging of cocultured cells in their living environment by scanning focused refractive index microscopy (SFRIM). Mouse microglial cells and synovial cells are cocultured on the top surface of a trapezoid prism. The RI imaging of living cells is obtained in a reflection-type method. The RI information is deduced with the simple derivative total internal reflection method, where a complex retrieval algorithm or reconstruction process is unnecessary. The outline of each cell is determined according to the RI value compared with that of the immersion liquid. The cocultured cells can be discriminated in the RI image. The measurement is nondestructive and label-free. The experimental results prove that SFRIM is a promising tool in the field of biological optics.


Assuntos
Microglia/citologia , Microscopia , Imagem Óptica/métodos , Líquido Sinovial/citologia , Animais , Técnicas de Cocultura , Camundongos , Refratometria
18.
Opt Lett ; 41(16): 3767-70, 2016 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-27519084

RESUMO

We present the application of scanning focused refractive index microscopy in the complex refractive index measurement of turbid media. An extra standard scattering layer is placed in front of the detector to perform scattering transformation on the reflected light. The principle of the scattering transformation is elaborated theoretically. The influence of the sample scattering is deeply and effectively suppressed experimentally. As a proof of the feasibility and accuracy of the proposed method, we demonstrate experimental data of 20% and 30% Intralipid solutions that are commonly used as phantom media for light propagation studies.

19.
Nanotechnology ; 27(9): 095301, 2016 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-26822121

RESUMO

Graphene has been extensively investigated for its use in flexible electronics, especially graphene synthesized by chemical vapor deposition (CVD). To enhance the flexibility of CVD graphene, wrinkles are often introduced. However, reports on the flexibility of reduced graphene oxide (RGO) films are few, because of their weak conductivity and, in particular, poor flexibility. To improve the flexibility of RGO, reduced graphene oxide nanoshells are fabricated, which combine self-assembled polystyrene nanosphere arrays and high-temperature thermal annealing processes. The resulting RGO films with nanoshells present a better resistance stabilization after stretching and bending the devices than RGO without nanoshells. The sustainability and performance advances demonstrated here are promising for the adoption of flexible electronics in a wide variety of future applications.

20.
Adv Mater ; 28(13): 2563-70, 2016 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-26822255

RESUMO

Twist-controlled bilayer graphene (tBLG) and double-twisted trilayer graphene (DTTG) with high precision are fabricated and their controllable optoelectronic properties are investigated for the first time. The successful fabrication of tBLG and DTTG with designated θ provides an attractive starting point for systematic studies of interlayer coupling in misoriented few-layer graphene systems with well-defined geometry.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...