Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Biotechnol Rep (Amst) ; 24: e00378, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31641622

RESUMO

Succinic acid is an important acid which is used in medicine and pharmaceutical companies. Metabolically engineered Escherichia coli strain was used for the effective production of succinic acid using Cocos nucifera water, which contained 5.00 ± 0.02 g/L glucose, 6.10 ± 0.01 g /L fructose and 6.70 ± 0.02 g /L sucrose. Fermentation of C. nucifera water with E. coli M6PM produced a final concentration of 11.78 ± 0.02 g/L succinic acid and yield of 1.23 ± 0.01 mol/mol, 0.66 ± 0.01 g/g total sugars after 72 h dual-phase fermentation in M9 medium while modeled sugar was 0.38 ± 0.02 mol/mol total sugars. It resulted in 72% of the maximum theoretical yield of succinic acid. Here we show that novel substrate of C. nucifera water resulted in effective production of succinic acid. These investigations unveil the importance of C. nucifera water as a substrate for the production of biochemicals.

3.
Bioprocess Biosyst Eng ; 41(10): 1497-1508, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30006798

RESUMO

A biorefinery process for high yield production of succinic acid from biomass sugars was investigated using recombinant Escherichia coli. The major problem been addressed is utilization of waste biomass for the production of succinic acid using metabolic engineering strategy. Here, methanol extract of Strophanthus preussii was used for fermentation. The process parameters were optimized. Glucose (9 g/L), galactose (4 g/L), xylose (6 g/L) and arabinose (0.5 g/L) were the major sugars present in the methanol extract of S. preussii. E. coli K3OS with overexpression of soluble nucleotide pyridine transhydrogenase sthA and mutation of lactate dehydrogenase A (ldhA), phosphotransacetylase acetate kinase A (pta-ackA), pyruvate formate lyase B (pflB), pyruvate oxidase B (poxB), produced a final succinic acid concentration of 14.40 g/L and yield of 1.10 mol/mol total sugars after 72 h dual-phase fermentation in M9 medium. Here, we show that the maximum theoretical yield using methanol extracts of S. preussii was 64%. Hence, methanol extract of S. preussii could be used for the production of biochemicals such as succinate, malate and pyruvate.


Assuntos
Apocynaceae/química , Escherichia coli , Metanol/química , Microrganismos Geneticamente Modificados , Extratos Vegetais , Ácido Succínico/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Microrganismos Geneticamente Modificados/genética , Microrganismos Geneticamente Modificados/metabolismo , Extratos Vegetais/química , Extratos Vegetais/farmacologia
4.
Biotechnol Lett ; 39(6): 865-871, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28299545

RESUMO

OBJECTIVE: Thialkalivibrio versutus D301 cells were immobilized on Fe3O4 nanoparticles (NPs) synthesized by an improved chemical coprecipitation method and modified with 3-aminopropyltriethoxysilane (APTES), then the immobilized cells were used in sulfur oxidation. RESULTS: The prepared Fe3O4-APTES NPs had a narrow size distribution (10 ± 2 nm) and were superparamagnetic, with a saturation magnetization of 60.69 emu/g. Immobilized cells had a saturation magnetization of 34.95 emu/g and retained superparamagnetism. The optimum conditions for cell immobilization were obtained at pH 9.5 and 1 M Na+. The immobilization capacity of Fe3O4-APTES NPs was 7.15 g DCW/g-NPs that was 2.3-fold higher than that of Fe3O4 NPs. The desulfurization efficiency of the immobilized cells was close to 100%, having the same sulfur oxidation capacity as free cells. Further, the immobilized cells could be reused at least eight times, retaining more than 85% of their desulfurization efficiency. CONCLUSION: Immobilization of cells with the modified magnetic NPs efficiently increased cell controllability, have no effect on their desulfurization activity and could be effectively used in large-scale industrial applications.


Assuntos
Células Imobilizadas/metabolismo , Ectothiorhodospiraceae/metabolismo , Nanopartículas de Magnetita/química , Nanopartículas de Magnetita/microbiologia , Propilaminas/química , Silanos/química , Enxofre/metabolismo , Reatores Biológicos/microbiologia , Reutilização de Equipamento , Oxirredução , Tamanho da Partícula , Enxofre/química
5.
Biotechnol Lett ; 39(3): 447-452, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27999973

RESUMO

OBJECTIVE: To construct efficient transformation and expression system and further improve desulfurizing activity of cells through expression of Vitreoscilla hemoglobin (VHb) in haloalkaliphilic Thialkalivibrio versutus SOB306. RESULTS: We transferred plasmids pKT230 and pBBR-smr into T. versutus SOB306 via a conjugation method. We identified four promoters from among several predicted promoters by scoring for streptomycin resistance, and finally selected tac and p3 based on the efficiency of expression of red fluorescent protein (RFP). Expression of RFP when regulated by tac was more than three times that of p3 in SOB306. Further, we expressed VHb under the control of tac promoter in SOB306. Expression of VHb was verified using CO-difference spectra. The results showed that VHb expression can boost sulfur metabolism, as evidenced by an increase of about 11.7 ± 1.8% in the average rate of thiosulfate removal in the presence of VHb. CONCLUSION: A conjugation transfer and an expression system for Thialkalivibrio, has been developed for the first time and used for expression of VHb to improve desulfurizing activity.


Assuntos
Proteínas de Bactérias/genética , Ectothiorhodospiraceae/genética , Expressão Gênica , Enxofre/metabolismo , Hemoglobinas Truncadas/genética , Proteínas de Bactérias/metabolismo , Conjugação Genética , Ectothiorhodospiraceae/crescimento & desenvolvimento , Escherichia coli/genética , Fluorescência , Regiões Promotoras Genéticas , Análise Espectral , Hemoglobinas Truncadas/metabolismo
6.
Bioresour Technol ; 214: 653-659, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27203224

RESUMO

Succinic acid, a C4 dicarboxylic acid is used in many fields such as food, agriculture, pharmaceutical and polymer industries. In this study, microbial production of succinic acid from Palmaria palmata was investigated for the first time. In engineered Escherichia coli KLPPP, lactate dehydrogenase, pyruvate formate lyase, phosphotransacetylase-acetate kinase and pyruvate oxidase genes were deleted while phosphoenolpyruvate carboxykinase was overexpressed. The recombinant exhibited higher molar yield of succinic acid on galactose (1.20±0.02mol/mol) than glucose (0.48±0.03mol/mol). The concentration and molar yield of succinic acid were 22.40±0.12g/L and 1.13±0.02mol/mol total sugar respectively after 72h dual phase fermentation from P. palmata hydrolysate which composed of glucose (12.57±0.17g/L) and galactose (18.03±0.10g/L). The results demonstrate that P. palmata red macroalgae biomass represents a novel and an economically alternative feedstock for biochemicals production.


Assuntos
Biotecnologia/métodos , Escherichia coli/metabolismo , Rodófitas/química , Ácido Succínico/metabolismo , Acetiltransferases/genética , Acetiltransferases/metabolismo , Biomassa , Enzimas/genética , Enzimas/metabolismo , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Fermentação , Galactose/metabolismo , Glucose/metabolismo , Hidrólise , Engenharia Metabólica/métodos , Fosfoenolpiruvato Carboxilase/genética , Fosfoenolpiruvato Carboxilase/metabolismo , Rodófitas/metabolismo , Alga Marinha/química , Alga Marinha/metabolismo
7.
Environ Sci Pollut Res Int ; 23(15): 15471-82, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27117155

RESUMO

Polytetrafluoroethylene/ferromagnetic nanoparticle/carbon black (PTFE/MNP/CB)-modified graphite felt (GF) was successfully applied as cathode for the mineralization of rhodamine B (RhB) in electro-Fenton (EF) process. The modified cathode showed high decolorization efficiency for RhB solution even in neutral pH condition and without external aeration, achieving nearly complete decolorization and 89.52 % total organic carbon (TOC) removal after 270-min oxidation with the MNP load 1.2 g at 50 A/m(2). Moreover, the operational parameters (current density, MNP load, initial pH, and airflow rate) were optimized. After that, adsorption isotherm was also conducted to compare the absorption quantity of CB and carbon nanotube (CNT). Then, the surface morphologies of MNPs were characterized by transmission electron microscope (TEM), energy-dispersive X-ray detector (EDX), and Fourier transform infrared spectroscopy (FTIR); and the modified cathode was characterized by SEM and contact angle. Finally, the stability and reusability of modified cathode were tested. Result uncovered that the PTFE/MNP/CB-modified cathode has the potential for industrial application and the solution after treatment was easily biodegradable.


Assuntos
Técnicas Eletroquímicas/métodos , Grafite/química , Peróxido de Hidrogênio/química , Ferro/química , Nanopartículas de Magnetita/química , Rodaminas/análise , Poluentes Químicos da Água/análise , Purificação da Água/métodos , Adsorção , Catálise , Eletrodos , Concentração de Íons de Hidrogênio , Oxirredução
8.
Environ Sci Pollut Res Int ; 23(12): 11574-83, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26931661

RESUMO

The electro-Fenton (EF) process treatment of 0.1-M (rhodamine B) RhB solution was studied with different graphite cathode materials, and graphite felt (GF) was selected as a promising material in further investigation. Then, the degradation performances of gas diffusion electrode (GDE) and graphite felt (GF) were compared, and GDE was confirmed to be more efficient in RhB removal. The operational parameters such as Fe(2+) dosage and current density were optimized, and comparison among different modified methods-polytetrafluoroethylene-carbon black (PTFE-CB), polytetrafluoroethylene-carbon nanotube (PTFE-CNT), electrodeposition-CB, and electrodeposition-CNT-showed 98.49 % RhB removal by PTFE-CB-modified cathode in 0.05 M Na2SO4 at a current density of 50 A/m(2) and an air flow rate of 1 L/min after 20 min. Meanwhile, after cathode modified by PTFE-CB, the mineralization efficiency and mineralization current efficiency performed absolutely better than the pristine one. Cyclic voltammograms, SEM images, contact angles, and BET surface area were carried out to demonstrate stronger current responses and higher hydrophilicity of GF after modified. The value of biochemical oxygen demand/chemical oxygen demand (BOD5/COD) increased from 0.049 to 0.331 after 90-min treatment, suggesting the solution was biodegradable, and the modified cathode was confirmed to be stable after ten circle runs. Finally, a proposed degradation pathway of RhB was put forward.


Assuntos
Corantes/química , Grafite/química , Rodaminas/química , Poluentes Químicos da Água/química , Análise da Demanda Biológica de Oxigênio , Técnicas Eletroquímicas , Eletrodos , Ferro/química , Nanotubos de Carbono/química , Politetrafluoretileno/química , Eliminação de Resíduos Líquidos/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...