Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 150
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38847172

RESUMO

BACKGROUND: Hepatocellular carcinoma (HCC) is a highly aggressive neoplasm that usually originates from liver cells and is one of the most common malignancies worldwide. To improve the survival rate of HCC patients, specific prognostic markers are essential to guide HCC therapy. CEP55 is a microtubule-bundling protein involved in critical cell functions, including cell growth, transformation, and cytokinesis. AIMS: This study examined gene alterations in HCC tumor tissues through comprehensive analysis, aiming to elucidate their contribution to disease development. METHODS: Bioinformatics tools were employed to investigate the expression, genetic variations, prognostic significance, and clinicopathological relevance of CEP55 across GEO and TCGA datasets. We further explored gene alterations, DNA methylation levels, and immune infiltration of CEP55. To elucidate the potential molecular mechanisms involved, GO and KEGG analysis was performed. Finally, RT-qPCR was also performed on a number of normal and tumoral cell lines in vitro, which demonstrated that the expression of the CEP55 was significantly higher in the tumor cell lines. RESULTS: We observed that CEP55 was upregulated in 16 cancers compared to corresponding normal tissues. CEP55 was found to be related to T stages, pathologic stages, histologic grade, and levels of AFP. K-M analysis demonstrated that CEP55 expression was associated with a worse outcome. ROC curve analysis showed that CEP55 expression accurately distinguished HCC from normal tissue (AUC = 0.954). The area under 1-,3- and 5-year survival ROCs were above 0.6. The HSPA4 genetic alterations in HCC were 0.8%. Among the 15 DNA methylation CpG sites, 6 were related to the prognosis of HCC. HSPA4 was positively related to immune cell infiltration and immune checkpoints in HCC. The KEGG pathway analysis indicated that CEP55 was associated with the cell cycle and presented together with CDK1. HCC cell lines were demonstrated to express high levels of CEP55 compared to normal cells. CONCLUSION: As a result of bioinformatic analyses and RT-qPCR validation in HCC, CEP55 increased in HCC tissues and was associated with the stage of the disease and survival rate.

2.
Int J Biol Sci ; 20(7): 2454-2475, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38725854

RESUMO

The emergence of Poly (ADP-ribose) polymerase inhibitors (PARPi) has marked the beginning of a precise targeted therapy era for ovarian cancer. However, an increasing number of patients are experiencing primary or acquired resistance to PARPi, severely limiting its clinical application. Deciphering the underlying mechanisms of PARPi resistance and discovering new therapeutic targets is an urgent and critical issue to address. In this study, we observed a close correlation between glycolysis, tumor angiogenesis, and PARPi resistance in ovarian cancer. Furthermore, we discovered that the natural compound Paris saponin VII (PS VII) partially reversed PARPi resistance in ovarian cancer and demonstrated synergistic therapeutic effects when combined with PARPi. Additionally, we found that PS VII potentially hindered glycolysis and angiogenesis in PARPi-resistant ovarian cancer cells by binding and stabilizing the expression of RORα, thus further inhibiting ECM1 and interfering with the VEGFR2/FAK/AKT/GSK3ß signaling pathway. Our research provides new targeted treatment for clinical ovarian cancer therapy and brings new hope to patients with PARPi-resistant ovarian cancer, effectively expanding the application of PARPi in clinical treatment.


Assuntos
Diosgenina/análogos & derivados , Glicólise , Neovascularização Patológica , Neoplasias Ovarianas , Saponinas , Transdução de Sinais , Receptor 2 de Fatores de Crescimento do Endotélio Vascular , Feminino , Humanos , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Saponinas/farmacologia , Saponinas/uso terapêutico , Transdução de Sinais/efeitos dos fármacos , Glicólise/efeitos dos fármacos , Linhagem Celular Tumoral , Neovascularização Patológica/tratamento farmacológico , Neovascularização Patológica/metabolismo , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Animais , Camundongos Nus , Camundongos , Angiogênese
3.
J Ethnopharmacol ; 331: 118277, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-38697407

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Chemotherapy tolerance weakened efficacy of chemotherapy drugs in the treating gastric cancer (GC). Banxiaxiexin decoction (BXXXD) was widely used in digestive diseases for thousands of years in Traditional Chinese medicine (TCM). In order to better treat GC, three other herbs were added to BXXXD to create a new prescription named Modified Banxiaxiexin decoction (MBXXXD). Although MBXXXD potentially treated GC by improving chemotherapy tolerance, the possible mechanisms were still unknown. AIM OF THE STUDY: To explore the therapeutic effect of MBXXXD on GC patients and explore the possible anti-cancer mechanism. MATERIALS AND METHODS: A randomized controlled trial (n = 146) was conducted to evaluate the clinical efficacy between MBXXXD + chemotherapy (n = 73) and placebo + chemotherapy (n = 73) in GC patients by testing overall survival, progression free survival, clinical symptoms, quality of life score, tumor markers, T cell subpopulation, and adverse reactions. Network pharmacology was conducted to discover the potential mechanism of MBXXXD in treating GC. Metabolic activity assay, cell clone colony formation and mitochondrial apoptosis were detected in human GC cell lines including AGS cell, KNM-45 cell and SGC7901 cell treated by MBXXXD. Multiple pathways including P53, AKT, IκB, P65, P38, ERK, JNK p-AKT, p-P65, p-P38, p-ERK and p-JNK in AGS cell, KNM-45 cell and SGC7901 cell treated by MBXXXD and GC patients treated by MBXXXD + chemotherapy were also detected. RESULTS: MBXXXD + chemotherapy promoted overall survival and progression free survival, improved clinical symptoms and quality of life score, increased T4 lymphocyte ratio and T8 lymphocyte ratio as well as T4/T8 lymphocyte ratio, and alleviated adverse reactions in GC patients. Network pharmacology predicted multiple targets and pathways of MBXXXD in treating GC including apoptosis, P53 pathway, AKT pathway, MAPK pathway. MBXXXD inhibited cell viability, decreased cell clone colony formation, and promoted mitochondrial apoptosis by producing reactive oxygen species (ROS), promoting mitochondrial permeability transition pore (MPTP) and the cleavage of pro-caspase-3 and pro-caspase-9, and decreasing mito-tracker red Chloromethyl-X-rosamine (CMXRos) in AGS cell, KNM-45 cell and SGC7901 cell. MBXXXD up-regulated the expression of P53 and IκB, and down-regulated the expression of p-AKT, p-P65, p-P38, p-ERK, p-JNK, AKT, P65, P38, ERK and JNK AGS cell, KNM-45 cell and SGC7901 cell treated by MBXXXD and GC patients treated by MBXXXD + chemotherapy. CONCLUSION: MBXXXD benefitted chemotherapy for GC by regulating multiple targets and pathways.


Assuntos
Medicamentos de Ervas Chinesas , Neoplasias Gástricas , Humanos , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/patologia , Feminino , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Pessoa de Meia-Idade , Masculino , Linhagem Celular Tumoral , Idoso , Apoptose/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Adulto , Farmacologia em Rede
4.
Redox Biol ; 72: 103147, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38593632

RESUMO

Adaptive response to physiological oxygen levels (physO2; 5% O2) enables embryonic survival in a low-oxygen developmental environment. However, the mechanism underlying the role of physO2 in supporting preimplantation development, remains elusive. Here, we systematically studied oxygen responses of hallmark events in preimplantation development. Focusing on impeded transcriptional upregulation under atmospheric oxygen levels (atmosO2; 20% O2) during the 2-cell stage, we functionally identified a novel role of HIF-1α in promoting major zygotic genome activation by serving as an oxygen-sensitive transcription factor. Moreover, during blastocyst formation, atmosO2 impeded H3K4me3 and H3K27me3 deposition by deregulating histone-lysine methyltransferases, thus impairing X-chromosome inactivation in blastocysts. In addition, we found atmosO2 impedes metabolic shift to glycolysis before blastocyst formation, thus resulting a low-level histone lactylation deposition. Notably, we also reported an increased sex-dimorphic oxygen response of embryos upon preimplantation development. Together, focusing on genetic and epigenetic events that are essential for embryonic survival and development, the present study advances current knowledge of embryonic adaptive responses to physO2, and provides novel insight into mechanism underlying irreversibly impaired developmental potential due to a short-term atmosO2 exposure.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Subunidade alfa do Fator 1 Induzível por Hipóxia , Zigoto , Animais , Feminino , Masculino , Camundongos , Blastocisto/metabolismo , Desenvolvimento Embrionário , Histonas/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Oxigênio/metabolismo , Transcriptoma , Zigoto/metabolismo
5.
FASEB J ; 38(3): e23453, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38318639

RESUMO

During early development, both genome-wide epigenetic reprogramming and metabolic remodeling are hallmark changes of normal embryogenesis. However, little is known about their relationship and developmental functions during the preimplantation window, which is essential for the acquisition of totipotency and pluripotency. Herein, we reported that glutathione (GSH), a ubiquitous intracellular protective antioxidant that maintains mitochondrial function and redox homeostasis, plays a critical role in safeguarding postfertilization DNA demethylation and is essential for establishing developmental potential in preimplantation embryos. By profiling mitochondria-related transcriptome that coupled with different pluripotency, we found GSH is a potential marker that is tightly correlated with full pluripotency, and its beneficial effect on prompting developmental potential was functionally conformed using in vitro fertilized mouse and bovine embryos as the model. Mechanistic study based on preimplantation embryos and embryonic stem cells further revealed that GSH prompts the acquisition of totipotency and pluripotency by facilitating ten-eleven-translocation (TET)-dependent DNA demethylation, and ascorbic acid (AsA)-GSH cycle is implicated in the process. In addition, we also reported that GSH serves as an oviductal paracrine factor that supports development potential of preimplantation embryos. Thus, our results not only advance the current knowledge of functional links between epigenetic reprogramming and metabolic remodeling during preimplantation development but also provided a promising approach for improving current in vitro culture system for assisted reproductive technology.


Assuntos
Desmetilação do DNA , Metilação de DNA , Animais , Bovinos , Camundongos , Blastocisto/metabolismo , Células-Tronco Embrionárias/metabolismo , Glutationa/metabolismo , Desenvolvimento Embrionário/genética
7.
Domest Anim Endocrinol ; 87: 106826, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38043389

RESUMO

Laparoscopic ovum pick-up (LOPU) combined with in vitro embryo production (IVEP) is a technology platform that improves the utilization rate of the elite ewe's ovarian oocytes and increases the number of obtained offspring. This study aimed to evaluate the effects of FSH pre-stimulation, serial oocyte collection, and breed on LOPU-IVEP under field conditions. Donors were randomly assigned to five groups (group A: decreasing doses of pituitary FSH (p-FSH); group B: constant doses of p-FSH; group C: two doses of long-acting recombinant ovine FSH (ro-FSH); group D: single administration of a long-acting ro-FSH in; group E: no FSH stimulation). Oocyte yield following LOPU (average recovered oocytes: 20.9 ± 0.5; average viable oocytes: 17.2 ± 0.4) and oocyte developmental competence (average blastocysts: 7.0 ± 0.2) in group C were significantly better than these of group D and group E, and similar to these of groups A and B. Meanwhile, there were no differences in oocyte yield and developmental capacity using repeated LOPU session at 1-, 2-, and 3-month intervals (p > 0.05). Finally, we compared LOPU-IVEP outcomes among five sheep breeds. The results indicated that East Friesian × Chinese Mongolian crossbred sheep and purebred East Friesian sheep had the more recovered oocytes and viable oocytes compared with the Suffolk, Dorper, and Texel breeds, and average number of blastocysts in East Friesian × Chinese Mongolian sheep group was also highest among the groups (8.1 ±0.3, p < 0.05). In summary, the results of this study indicate long-acting ro-FSH pre-stimulation combined with 12 times LOPU sessions over one year maximizes embryo production of elite donor ewes under field conditions.


Assuntos
Fertilização in vitro , Laparoscopia , Animais , Ovinos , Feminino , Fertilização in vitro/veterinária , Oócitos/fisiologia , Embrião de Mamíferos , Hormônio Foliculoestimulante/farmacologia , Laparoscopia/veterinária
8.
Int J Biol Sci ; 19(16): 5204-5217, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37928267

RESUMO

Circulating tumor cells (CTCs) are cells that detach from the primary tumor and enter the bloodstream, playing a crucial role in the metastasis of lung cancer. Unfortunately, there is currently a lack of drugs specifically designed to target CTCs and prevent tumor metastasis. In this study, we present evidence that polyphyllin VII, a potent anticancer compound, effectively inhibits the metastasis of lung cancer by inducing a process called anoikis in CTCs. We observed that polyphyllin VII had significant cytotoxicity and inhibited colony formation, migration, and invasion in both our newly established cell line CTC-TJH-01 and a commercial lung cancer cell line H1975. Furthermore, we found that polyphyllin VII induced anoikis and downregulated the TrkB and EGFR-MEK/ERK signaling pathways. Moreover, activation of TrkB protein did not reverse the inhibitory effect of polyphyllin VII on CTCs, while upregulation of EGFR protein effectively reversed it. Furthermore, our immunodeficient mouse models recapitulated that polyphyllin VII inhibited lung metastasis, which was associated with downregulation of the EGFR protein, and reduced the number of CTCs disseminated into the lungs by inducing anoikis. Together, these results suggest that polyphyllin VII may be a promising compound for the treatment of lung cancer metastasis by targeting CTCs.


Assuntos
Neoplasias Pulmonares , Animais , Camundongos , Anoikis , Linhagem Celular Tumoral , Receptores ErbB/genética , Neoplasias Pulmonares/metabolismo , Metástase Neoplásica , Humanos
9.
Biol Proced Online ; 25(1): 29, 2023 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-37953280

RESUMO

BACKGROUND: Non-small cell lung cancer (NSCLC) remains a leading cause of cancer-related deaths worldwide, primarily due to its propensity for metastasis. Patients diagnosed with localized primary cancer have higher survival rates than those with metastasis. Thus, it is imperative to discover biomarkers for the early detection of NSCLC and the timely prediction of tumor metastasis to improve patient outcomes. METHODS: Here, we utilized an integrated approach to isolate and characterize plasma exosomes from NSCLC patients as well as healthy individuals. We then conducted proteomics analysis and parallel reaction monitoring to identify and validate the top-ranked proteins of plasma exosomes. RESULTS: Our study revealed that the proteome in exosomes from NSCLC patients with metastasis was distinctly different from that from healthy individuals. The former had larger diameters and lower concentrations of exosomes than the latter. Furthermore, among the 1220 identified exosomal proteins, we identified two distinct panels of biomarkers. The first panel of biomarkers (FGB, FGG, and VWF) showed potential for early NSCLC diagnosis and demonstrated a direct correlation with the survival duration of NSCLC patients. The second panel of biomarkers (CFHR5, C9, and MBL2) emerged as potential biomarkers for assessing NSCLC metastasis, of which CFHR5 alone was significantly associated with the overall survival of NSCLC patients. CONCLUSIONS: These findings underscore the potential of plasma exosomal biomarkers for early NSCLC diagnosis and metastasis prediction. Notably, CFHR5 stands out as a promising prognostic indicator for NSCLC patients. The clinical utility of exosomal biomarkers offers the potential to enhance the management of NSCLC.

10.
Endocrinology ; 165(1)2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-37950883

RESUMO

Decidualization is a progesterone-dependent cellular differentiation process that is essential for establishing pregnancy. Robust activation of glycolysis and lactate synthesis during decidualization is remarkable, but their developmental functions remain largely unknown. Herein, we identify that endometrial lactate production plays a critical role in establishing local histone lactylation, a newly identified histone modification, and is important for ensuring normal decidualization. Enhanced endometrial glycolysis is the hallmark metabolic change and is tightly coupled with H4K12la during decidualization. Inhibition of histone lactylation impaired decidualization, in either physiological conception or in vivo and in vitro induced decidualization models. Mechanistic study based on CUT&Tag and ATAC-seq revealed that a transcriptional factor hypoxia-inducible factor 1 α (Hif1α) is the critical regulatory target of H4K12la, and in turn forms an H4K12la-Hif1α-glycolysis feedback loop to drive decidualization. Moreover, we demonstrate that the loop is directly activated by progesterone during decidualization. Our study not only advances the current knowledge of the role of lactate in regulating uterine function, but also establishes a novel functional link among the major endocrine factors, endometrial metabolic change, and epigenetic modification during endometrial remodeling. These findings present valuable clues to develop clinical intervention strategies to improve pregnancy outcomes following both natural conception and assisted reproduction.


Assuntos
Histonas , Progesterona , Gravidez , Feminino , Humanos , Progesterona/farmacologia , Progesterona/metabolismo , Histonas/metabolismo , Decídua/metabolismo , Retroalimentação , Endométrio/metabolismo , Lactatos/metabolismo , Glicólise , Células Estromais/metabolismo
11.
FASEB J ; 37(12): e23295, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37984844

RESUMO

C-natriuretic peptide (CNP) is the central regulator of oocyte meiosis progression, thus coordinating synchronization of oocyte nuclear-cytoplasmic maturation. However, whether CNP can independently regulate cytoplasmic maturation has been long overlooked. Mitochondrial DNA (mtDNA) accumulation is the hallmark event of cytoplasmic maturation, but the mechanism underlying oocyte mtDNA replication remains largely elusive. Herein, we report that CNP can directly stimulate oocyte mtDNA replication at GV stage, and deficiency of follicular CNP may contribute largely to lower mtDNA copy number in in vitro matured oocytes. The mechanistic study showed that cAMP-PKA-CREB1 signaling cascade underlies the regulatory role of CNP in stimulating mtDNA replication and upregulating related genes. Of interest, we also report that CNP-NPR2 signaling is inhibited in aging follicles, and this inhibition is implicated in lower mtDNA copy number in oocytes from aging females. Together, our study provides the first direct functional link between follicular CNP and oocyte mtDNA replication, and identifies its involvement in aging-associated mtDNA loss in oocytes. These findings, not only update the current knowledge of the functions of CNP in coordinating oocyte maturation but also present a promising strategy for improving in vitro fertilization outcomes of aging females.


Assuntos
DNA Mitocondrial , Técnicas de Maturação in Vitro de Oócitos , Feminino , Humanos , DNA Mitocondrial/genética , Peptídeo Natriurético Tipo C/genética , Peptídeo Natriurético Tipo C/farmacologia , Oócitos/fisiologia , Meiose , Peptídeos Natriuréticos/genética , Vasodilatadores
12.
STAR Protoc ; 4(4): 102680, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37897732

RESUMO

The X chromosome/autosome ratio has been widely used to profile XCU at the chromosomal level. However, this approach overlooks features of inside genes. Here, we present a computational protocol for the identification of X-linked genes contributing to X chromosome upregulation from RNA-sequencing datasets. We describe steps for selecting data, preparing software, processing data, and data analysis. This protocol quantifies the contribution value and contribution increment of each X-linked gene to XCU. For complete details on the use and execution of this protocol, please refer to Lyu et al. (2022).1.


Assuntos
Genes Ligados ao Cromossomo X , Cromossomo X , Regulação para Cima/genética , Sequência de Bases , RNA
13.
Genes (Basel) ; 14(10)2023 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-37895234

RESUMO

In vitro embryo production depends on high-quality oocytes. Compared with in vivo matured oocytes, in vitro oocytes undergo precocious meiotic resumption, thus compromising oocyte quality. C-type natriuretic peptide (CNP) is a follicular factor maintaining meiotic arrest. Thus, CNP-pretreatment has been widely used to improve the in vitro maturation (IVM) of oocytes in many species. However, the efficacy of this strategy has remained unsatisfactory in porcine oocytes. Here, by determining the functional concentration and dynamics of CNP in inhibiting spontaneous meiotic resumption, we improved the current IVM system of porcine oocytes. Our results indicate that although the beneficial effect of the CNP pre-IVM strategy is common among species, the detailed method may be largely divergent among them and needs to be redesigned specifically for each one. Focusing on the overlooked role of cumulus cells surrounding the oocytes, we also explore the mechanisms relevant to their beneficial effect. In addition to oocytes per se, the enhanced anti-apoptotic and anti-oxidative gene expression in cumulus cells may contribute considerably to improved oocyte quality. These findings not only emphasize the importance of screening the technical parameters of the CNP pre-IVM strategy for specific species, but also highlight the critical supporting role of cumulus cells in this promising strategy.


Assuntos
Técnicas de Maturação in Vitro de Oócitos , Peptídeo Natriurético Tipo C , Animais , Suínos , Peptídeo Natriurético Tipo C/farmacologia , Peptídeo Natriurético Tipo C/metabolismo , Técnicas de Maturação in Vitro de Oócitos/métodos , Meiose , Oócitos/metabolismo , Estresse Oxidativo , Apoptose
15.
Curr Biol ; 33(10): R397, 2023 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-37220728

RESUMO

Lyu et al. respond to the letter from Lentini and Reinius.

16.
Biochem Pharmacol ; 213: 115597, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37196681

RESUMO

Rhizoma Paridis is a traditional Chinese medicine commonly used for treatment of malignant tumors. Paris saponins Ⅶ (PSⅦ) is one of the components of Rhizoma Paridis, but the role of PSⅦ in glucose metabolism in ovarian cancer remains elucidated. A series of experiments in the current study demonstrated that PSⅦ inhibites glycolysis and promotes cell apoptosis in ovarian cancer cells. Expression levels of glycolysis-related proteins and apoptosis-related proteins were significantly altered by upon treatment with PSⅦ, as determined from western blot analyses. Mechanistically, PSⅦ exerted its anti-tumor effects by targeting the RORC/ACK1 signaling pathway. These findings indicate that PSⅦ inhibits glycolysis-induced cell proliferation and apoptosis through the RORC/ACK1 pathway, supporting its potential development as a candidate chemotherapeutic agent for ovarian cancer.


Assuntos
Neoplasias Ovarianas , Saponinas , Humanos , Feminino , Transdução de Sinais , Apoptose , Glicólise , Neoplasias Ovarianas/metabolismo , Saponinas/farmacologia , Saponinas/uso terapêutico , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/metabolismo
17.
Molecules ; 28(8)2023 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-37110589

RESUMO

Antiplatelet aggregation agents have demonstrated clinical benefits in the treatment of ischemic stroke. In our study, a series of novel nitric oxide (NO)-donating ligustrazine derivatives were designed and synthesized as antiplatelet aggregation agents. They were evaluated for the inhibitory effect on 5'-diphosphate (ADP)-induced and arachidonic acid (AA)-induced platelet aggregation in vitro. The results showed that compound 15d displayed the best activity in both ADP-induced and AA-induced assays, and compound 14a also showed quite better activity than ligustrazine. The preliminary structure-activity relationships of these novel NO-donating ligustrazine derivatives were discussed. Moreover, these compounds were docked with the thromboxane A2 receptor to study the structure-activity relationships. These results suggested that the novel NO-donating ligustrazine derivatives 14a and 15d deserve further study as potent antiplatelet aggregation agents.


Assuntos
Óxido Nítrico , Inibidores da Agregação Plaquetária , Inibidores da Agregação Plaquetária/farmacologia , Óxido Nítrico/farmacologia , Agregação Plaquetária , Pirazinas/farmacologia , Relação Estrutura-Atividade , Ácido Araquidônico/farmacologia
18.
J Mater Chem B ; 11(15): 3453-3472, 2023 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-37009696

RESUMO

Combining chemotherapy and immunotherapy is a promising strategy for the treatment of non-small cell lung cancer (NSCLC) metastasis. However, platinum-based chemotherapeutics and immune checkpoint blockade-based cancer immunotherapy have toxic side effects and limitations. Ursolic acid (UA) and astragaloside IV (AS-IV) are natural compounds with anticancer activity sourced from Traditional Chinese medicine (TCM). However, their poor water solubilities and targeted deletions limit their medicinal value. In this study, we fabricated hyaluronic acid (HA)-modified UA/(AS-IV)-loaded polydopamine (PDA) nanomedicine (UA/(AS-IV)@PDA-HA) with a high yield at a low cost via simple synthesis. This represents a novel multifunctional nanomedicine that combines chemotherapy, photothermal therapy (PTT), and immunotherapy with an active tumor-targeting ability. The as-prepared nanomedicine not only increased the aqueous solubilities of UA and AS-IV, but also improved their active targeting abilities. HA binds specifically to the overexpressed cluster of differentiation 44 (CD44) on the surface of most cancer cells, thereby improving drug targeting. While evaluating the anticancer effect of UA/(AS-IV)@PDA-HA in vitro and in vivo, the PDA nanodelivery system significantly improved UA-mediated cytotoxicity and anti-metastatic ability against NSCLC cells. In addition, the system also improved the AS-IV-mediated self-immune response of tumor-related antigens, which further inhibited the growth and distant metastasis of NSCLC. Further, PDA nanomaterial-mediated PTT inhibited tumor growth substantially. UA/(AS-IV)@PDA-HA not only significantly eradicated the primary tumor but also strongly inhibited the distant metastasis of NSCLC in vitro and in vivo. Thus, it has immense potential for development as an efficient anti-metastatic agent for NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Nanopartículas , Humanos , Ácido Hialurônico/farmacologia , Nanomedicina , Ácido Ursólico
19.
Genes (Basel) ; 14(4)2023 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-37107647

RESUMO

Mammalian preimplantation development depends on the interaction between embryonic autocrine and maternal paracrine signaling. Despite the robust independence of preimplantation embryos, oviductal factors are thought to be critical to pregnancy success. However, how oviductal factors regulate embryonic development and the underlying mechanism remain unknown. In the present study, focusing on WNT signaling, which has been reported to be essential for developmental reprogramming after fertilization, we analyzed the receptor-ligand repertoire of preimplantation embryonic WNT signaling, and identified that the WNT co-receptor LRP6 is necessary for early cleavage and has a prolonged effect on preimplantation development. LRP6 inhibition significantly impeded zygotic genome activation and disrupted relevant epigenetic reprogramming. Focusing on the potential oviductal WNT ligands, we found WNT2 as the candidate interacting with embryonic LRP6. More importantly, we found that WNT2 supplementation in culture medium significantly promoted zygotic genome activation (ZGA) and improved blastocyst formation and quality following in vitro fertilization (IVF). In addition, WNT2 supplementation significantly improved implantation rate and pregnancy outcomes following embryo transfer. Collectively, our findings not only provide novel insight into how maternal factors regulate preimplantation development through maternal-embryonic communication, but they also propose a promising strategy for improving current IVF systems.


Assuntos
Desenvolvimento Embrionário , Zigoto , Gravidez , Humanos , Animais , Feminino , Ligantes , Desenvolvimento Embrionário/genética , Implantação do Embrião , Oviductos , Mamíferos , Proteína Wnt2/genética , Proteína-6 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética
20.
Genes (Basel) ; 14(4)2023 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-37107703

RESUMO

It has been clear that retinoic acid (RA), the most active vitamin A (VA) derivative, plays a central role in governing oocyte meiosis initiation. However, it has not been functionally determined if RA participates in luteinizing hormone (LH)-induced resumption from long-lasting oocyte meiotic arrest, which is essential for haploid oocyte formation. In the present study, using well-established in vivo and in vitro models, we identified that intrafollicular RA signaling is important for normal oocyte meiotic resumption. A mechanistic study indicated that mural granulosa cells (MGCs) are the indispensable follicular compartment for RA-prompted meiotic resumption. Moreover, retinoic acid receptor (RAR) is essential for mediating RA signaling to regulate meiotic resumption. Furthermore, we found zinc finger protein 36 (ZFP36) is the transcriptional target of RAR. Both RA signaling and epidermal growth factor (EGF) signaling were activated in MGCs in response to LH surge, and two intrafollicular signalings cooperate to induce rapid Zfp36 upregulation and Nppc mRNA decrease, which is critical to LH-induced meiotic resumption. These findings extend our understanding of the role of RA in oocyte meiosis: RA not only governs meiotic initiation but also regulates LH-induced meiotic resumption. We also emphasize the importance of LH-induced metabolic changes in MGCs in this process.


Assuntos
Oócitos , Tretinoína , Feminino , Animais , Tretinoína/farmacologia , Tretinoína/metabolismo , Oócitos/metabolismo , Hormônio Luteinizante/farmacologia , Hormônio Luteinizante/genética , Hormônio Luteinizante/metabolismo , Transdução de Sinais , Células da Granulosa/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...