Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi ; 38(6): 734-741, 2024 Jun 15.
Artigo em Chinês | MEDLINE | ID: mdl-38918196

RESUMO

Objective: To investigate the impact of the bone mass and volume of the low-density area under the tibial plateau on the lower limb force line by finite element analysis, offering mechanical evidence for preventing internal displacement of the lower limb force line in conjunction with knee varus in patients with knee osteoarthritis (KOA) and reducing bone mass under the tibial plateau. Methods: A healthy adult was selected as the study subject, and X-ray film and CT imaging data were acquired. Mimics 21.0 software was utilized to reconstruct the complete knee joint model and three models representing low-density areas under the tibial plateau with equal volume but varying shapes. These models were then imported into Solidworks 2023 software for assembly and verification. Five KOA finite element models with 22%, 33%, 44%, 55%, and 66% bone mass reduction in the low-density area under tibial plateau and 5 KOA finite element models with 81%, 90%, 100%, 110%, and 121% times of the low-density area model with 66% bone mass loss were constructed, respectively. Under physiological loading conditions of the human lower limb, the distal ends of the tibia and fibula were fully immobilized. An axial compressive load of 1 860 N, following the lower limb force line, was applied to the primary load-bearing area on the femoral head surface. The maximum stress within the tibial plateau, as well as the maximum displacements of the tibial cortical bone and tibial subchondral bone, were calculated and analyzed using the finite element analysis software Abaqus 2022. Subsequently, predictions regarding the alteration of the lower limb force line were made based on the analysis results. Results: The constructed KOA model accorded with the normal anatomical structure of lower limbs. Under the same boundary conditions and the same load, the maximum stress of the medial tibial plateau, the maximum displacement of the tibial cortical bone and the maximum displacement of the cancellous bone increased along with the gradual decrease of bone mass in the low-density area under the tibial plateau and the gradual increase in the volume of the low-density area under tibial plateau, with significant differences ( P<0.05). Conclusion: The existence of a low-density area under tibial plateau suggests a heightened likelihood of knee varus and inward movement of the lower limb force line. Both the volume and reduction in bone mass of the low-density area serve as critical initiating factors. This information can provide valuable guidance to clinicians in proactively preventing knee varus and averting its occurrence.


Assuntos
Densidade Óssea , Análise de Elementos Finitos , Articulação do Joelho , Osteoartrite do Joelho , Tíbia , Tomografia Computadorizada por Raios X , Humanos , Tíbia/anatomia & histologia , Fenômenos Biomecânicos , Osteoartrite do Joelho/fisiopatologia , Adulto , Extremidade Inferior , Suporte de Carga , Masculino , Imageamento Tridimensional , Estresse Mecânico , Simulação por Computador , Software
2.
Sci Rep ; 14(1): 296, 2024 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-38167445

RESUMO

The association between sarcopenia and OA still presents many uncertainties. We aimed to assess whether sarcopenia is associated with occurrence of OA in US adults. We conducted a cross-sectional study consisting of 11,456 participants from National Health and Nutrition Examination Survey 1999-2006. Sarcopenia was defined by a low muscle mass. The skeletal muscle index (SMI) was calculated as the appendicular skeletal muscle mass divided by body mass indexes (BMI) or body weight. OA status was assessed by using self-reported questionnaire. We evaluated the association between sarcopenia and OA using multivariate regression models. In addition, subgroup and interaction analysis were performed. Sarcopenia was associated with OA when it was defined by the BMI-adjusted SMI (OR = 1.23 [95% CI, 1.01, 1.51]; P = 0.038) and defined by the weight-adjusted SMI (OR = 1.30 [95% CI, 1.10, 1.55]; P = 0.003). Subgroup and interaction analysis found that the strongest positive association mainly exists in smoker (OR = 1.54 [95% CI, 1.21, 1.95], Pint = 0.006), and this association is not significant in other groups. In conclusion, we found that sarcopenia was associated with occurrence of OA. Subgroup analysis revealed that the association between sarcopenia and OA was more pronounced in smoker. Further well-designed prospective cohort studies are needed to assess our results.


Assuntos
Osteoartrite , Sarcopenia , Adulto , Humanos , Sarcopenia/complicações , Sarcopenia/epidemiologia , Sarcopenia/diagnóstico , Estudos Transversais , Inquéritos Nutricionais , Estudos Prospectivos , Músculo Esquelético , Osteoartrite/complicações , Osteoartrite/epidemiologia
3.
Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi ; 37(11): 1394-1402, 2023 Nov 15.
Artigo em Chinês | MEDLINE | ID: mdl-37987051

RESUMO

Objective: To establish finite element models of different preserved angles of osteonecrosis of the femoral head (ONFH) for the biomechanical analysis, and to provide mechanical evidence for predicting the risk of ONFH collapse with anterior preserved angle (APA) and lateral preserved angle (LPA). Methods: A healthy adult was selected as the study object, and the CT data of the left femoral head was acquired and imported into Mimics 21.0 software to reconstruct a complete proximal femur model and construct 3 models of necrotic area with equal volume and different morphology, all models were imported into Solidworks 2022 software to construct 21 finite element models of ONFH with LPA of 45°, 50°, 55°, 60°, 65°, 70°, and 75° when APA was 45°, respectively, and 21 finite element models of ONFH with APA of 45°, 50°, 55°, 60°, 65°, 70°, 75° when LPA was 45°, respectively. According to the physiological load condition of the femoral head, the distal femur was completely fixed, and a force with an angle of 25°, downward direction, and a magnitude of 3.5 times the subject's body mass was applied to the weight-bearing area of the femoral head surface. The maximum Von Mises stress of the surface of the femoral head and the necrotic area and the maximum displacement of the weight-bearing area of the femoral head were calculated and observed by Abaqus 2021 software. Results: The finite element models of ONFH were basically consistent with biomechanics of ONFH. Under the same loading condition, there was stress concentration around the necrotic area in the 42 ONFH models with different preserved angles composed of 3 necrotic areas with equal volume and different morphology. When APA was 60°, the maximum Von Mises stress of the surface of the femoral head and the necrotic area and the maximum displacement of the weight-bearing area of the femoral head of the ONFH models with LPA<60° were significantly higher than those of the models with LPA≥60° ( P<0.05); there was no significant difference in each index among the ONFH models with LPA≥60° ( P>0.05). When LPA was 60°, each index of the ONFH models with APA<60° were significantly higher than those of the models with APA≥60° ( P<0.05); there was no significant difference in each index among the ONFH models with APA≥60° ( P>0.05). Conclusion: From the perspective of biomechanics, when a preserved angle of ONFH is less than its critical value, the stress concentration phenomenon in the femoral head is more pronounced, suggesting that the necrotic femoral head may have a higher risk of collapse in this state.


Assuntos
Necrose da Cabeça do Fêmur , Cabeça do Fêmur , Adulto , Humanos , Cabeça do Fêmur/diagnóstico por imagem , Cabeça do Fêmur/cirurgia , Análise de Elementos Finitos , Estresse Mecânico , Fêmur/diagnóstico por imagem , Necrose da Cabeça do Fêmur/diagnóstico por imagem , Necrose da Cabeça do Fêmur/cirurgia
4.
Front Cell Dev Biol ; 11: 1251634, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37876552

RESUMO

Background: Steroid-induced Osteonecrosis of the Femoral Head (SIONFH) is a skeletal disease with a high incidence and a poor prognosis. Whole body vibration therapy (WBVT), a new type of physical training, is known to promote bone formation. However, it remains unclear whether WBVT has a therapeutic effect on SIONFH. Materials and methods: Thirty adult male and female Sprague-Dawley (SD) rats were selected and randomly assigned to three experimental groups: the control group, the model group, and the mechanical vibration group, respectively. SIONFH induction was achieved through the combined administration of lipopolysaccharides (LPS) and methylprednisolone sodium succinate for injection (MPS). The femoral head samples underwent hematoxylin and eosin (H&E) staining to visualize tissue structures. Structural parameters of the region of interest (ROI) were compared using Micro-CT analysis. Immunohistochemistry was employed to assess the expression levels of Piezo1, BMP2, RUNX2, HIF-1, VEGF, CD31, while immunofluorescence was used to examine CD31 and Emcn expression levels. Results: The H&E staining results revealed a notable improvement in the ratio of empty lacuna in various groups following WBVT intervention. Immunohistochemical analysis showed that the expression levels of Piezo1, BMP2, RUNX2, HIF-1, VEGF, and CD31 in the WBVT group exhibited significant differences when compared to the Model group (p < 0.05). Additionally, immunofluorescence analysis demonstrated statistically significant differences in CD31 and Emcn expression levels between the WBVT group and the Model group (p < 0.05). Conclusion: WBVT upregulates Piezo1 to promote osteogenic differentiation, potentially by enhancing the HIF-1α/VEGF axis and regulating H-vessel angiogenesis through the activation of the Piezo1 ion channel. This mechanism may lead to improved blood flow supply and enhanced osteogenic differentiation within the femoral head.

5.
Front Cell Dev Biol ; 11: 1250070, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37822871

RESUMO

Background: Osteonecrosis of the femoral head is a complex hip ailment. The precise changes in bone tissue during the disease's onset remain unclear. It is vital to assess both the quantity and quality of the trabecular state in a necrotic femoral head. Aim: This study aims to identify and compare the ultrastructural changes in osteocyte morphology and nanomechanical characteristics within various regions of necrotic femoral heads. Methods: Between December 2016 and May 2023, we gathered ten necrotic femoral heads from patients and five femoral heads from cadavers. The samples from the necrotic femoral heads were categorized into three areas: necrotic, sclerotic, and normal. Our assessment methods encompassed hematoxylin and eosin staining, sclerostin (SOST) immunohistochemistry, micro-computed tomography, nanoindentation, and acid-etched scanning electron microscopy. These techniques enabled us to examine the SOST expression, trabecular microstructure, micromechanical properties of trabeculae, and modifications in osteocyte morphology at the ultrastructural level. Results: The protein level of SOST was found to be lower in the sclerotic area. In the necrotic area, decreased values of bone volume fraction, trabecular thickness, and trabecular number and an increased value of trabecular separation were found. Conversely, in the sclerotic area, higher mean values of bone volume fraction, trabecular number, and trabecular thickness and lower trabecular separation indicated significant changes in the structural characteristics of trabeculae. Compared with the healthy area, the elastic modulus and hardness in the sclerotic area were significantly higher than those in the necrotic, normal, and control areas, while those in necrotic areas were significantly lower than those in the healthy area. The number of osteocytes tended to increase in the sclerotic area with more canalicular cells compared to the healthy area and control group. Conclusion: These results imply that the stress distribution within the sclerotic area could potentially lead to enhanced trabecular quality and quantity. This effect is also reflected in the increased count of osteocytes and their canaliculars. It is plausible that the sclerotic trabecular bone plays a pivotal role in the repair of necrotic femoral heads.

6.
Front Microbiol ; 14: 1182320, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37293215

RESUMO

Introduction: Semen quality is decreasing worldwide, leading to increased male infertility. This study analyzed the microbiota of the gut, semen, and urine in individuals with semen abnormalities to identify potential probiotics and pathogenic bacteria that affect semen parameters and help develop new methods for the diagnosis and treatment of patients with semen abnormalities. Methods: We recruited 12 individuals with normal semen parameters (control group), 12 with asthenospermia but no semen hyperviscosity (Group_1), 6 with oligospermia (Group_2), 9 with severe oligospermia or azoospermia (Group_3), and 14 with semen hyperviscosity only (Group_4). The semen, gut, and urine microbiota were examined by analyzing the 16S ribosomal RNA gene sequence using next-generation sequencing. Results: The gut microbes were clustered into the highest number of operational taxonomic units, followed by urine and semen. Furthermore, the α-diversity of gut microbes was highest and significantly different from that of urine and semen microbiota. The microbiota of the gut, urine, and semen were all significantly different from each other in terms of ß-diversity. The gut abundance of Collinsella was significantly reduced in groups 1, 3, and 4. Furthermore, the gut abundance of Bifidobacterium and Blautia was significantly decreased in Group_1, while that of Bacteroides was significantly increased in Group_3. The abundance of Staphylococcus was significantly increased in the semen of groups 1 and 4. Finally, Lactobacillus abundance was significantly reduced in the urine of groups 2 and 4. Discussion: This study comprehensively describes the differences in intestinal and genitourinary tract microbiota between healthy individuals and those with abnormal semen parameters. Furthermore, our study identified Collinsella, Bifidobacterium, Blautia, and Lactobacillus as potential probiotics. Finally, the study identified Bacteroides in the gut and Staphylococcus in semen as potential pathogenic bacteria. Our study lays the foundation of a new approach to the diagnosis and treatment of male infertility.

7.
Sci Total Environ ; 742: 140471, 2020 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-32640400

RESUMO

To investigate the effects of bioturbation on absorption and enrichment of pollutants from sediments by aquatic organisms, microcosm systems similar to natural aquatic environment were established, and the release of Cu and Zn from the sediment, and their accumulation in some typical aquatic organisms, including submerged plants, floating plants and fish, with the presence of tubificids of different densities were measured. The results of this pilot study showed that the presence of tubificids promoted the migration of the trace metals from sediment to overlying water, especially when there were more worms and especially for Cu which is not easily released from the sediment. During the experiment, Cu in overlying water was mainly in particulate fraction. While for Zn, it was mainly in dissolved form in the early stage of the experiment, and then the dominant fraction gradually changed to particulate fraction. The bioturbation of tubificids also promoted the accumulation of both Cu and Zn in the aquatic organisms. In one system, different types of aquatic organisms showed different features for the accumulation of Cu and Zn. Meanwhile, with the presence of different intensity of bioturbation, the concentration of Cu or Zn in the same kind of organism was different. After a 30-day experiment, trace metal concentration in the aquatic organisms generally decreased in the order of floating plants (lesser duckweed) > submerged plants (Amazon sword) > small fish (zebrafish), and the concentration of Zn in the organisms was usually significantly higher than that of Cu in the same organism, especially in duckweed and zebrafish. However, the presence of tubificids and the density of them had more considerable effects on the uptake of Cu by the organisms, than on the uptake of Zn.


Assuntos
Organismos Aquáticos , Poluentes Químicos da Água/análise , Animais , Bioacumulação , Sedimentos Geológicos , Projetos Piloto , Zinco
8.
Sci Total Environ ; 670: 478-485, 2019 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-30904659

RESUMO

For a better understanding of the migration process of trace metals in aquatic environment with multiple phases, dynamic processes of Cd reaching quasi-equilibrium among different phases, including water, natural biofilms and surficial sediments, were investigated, using microcosmic simulating systems. The processes of the re-equilibrium of Cd after a supplement of Cd and after an adjustment of solution pH were also investigated. The results showed both the migration of Cd from water to the solid materials, and the accumulation of Cd in the solid materials. (Modified) pseudo-second-order kinetic model can be used to simulate such processes. However, Cd content in biofilms and sediments varied in different ways: Cd in biofilms increased rapidly at first, then decreased, and finally approached constancy, while Cd in sediments increased slowly and continuously. The more the Cd was added in the water, the higher the Cd contents in solid phases, and the quicker the Cd accumulation and decrease process would be. The decrease of solution pH promoted the release of adsorbed Cd from the solid phases, especially from biofilms, while the increase of pH stimulated the migration of Cd to the solids. Therefore, as an indicator and temporary reservoir of trace metals in water, which respond rapidly to the variation of trace metal concentration in water, biofilms play a role in indicating and buffering the variation of trace metals in water. Although the response of sediments to the variation of metal concentration in water is very slow, most trace metals migrate to sediments eventually, thus sediments play a role as a more stable and massive reservoir for trace metals in water.


Assuntos
Biofilmes/crescimento & desenvolvimento , Cádmio/análise , Monitoramento Ambiental , Poluentes Químicos da Água/análise , Adsorção , Biodegradação Ambiental
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...