Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cells ; 11(13)2022 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-35805090

RESUMO

Two pore channels (TPCs) are implicated in vesicle trafficking, virus infection, and autophagy regulation. As Na+- or Ca2+-permeable channels, TPCs have been reported to be activated by NAADP, PI(3,5)P2, and/or high voltage. However, a comparative study on the function and regulation of the three mammalian TPC subtypes is currently lacking. Here, we used the electrophysiological recording of enlarged endolysosome vacuoles, inside-out and outside-out membrane patches to examine the three TPCs of rabbit (Oryctolagus cuniculus, or Oc) heterologously expressed in HEK293 cells. While PI(3,5)P2 evoked Na+ currents with a potency order of OcTPC1 > OcTPC3 > OcTPC2, only OcTPC2 displayed a strict dependence on PI(3,5)P2. Both OcTPC1 and OcTPC3 were activatable by PI3P and OcTPC3 was also activated by additional phosphoinositide species. While OcTPC2 was voltage-independent, OcTPC1 and OcTPC3 showed voltage dependence with OcTPC3 depending on high positive voltages. Finally, while OcTPC2 preferred a luminal pH of 4.6−6.0 in endolysosomes, OcTPC1 was strongly inhibited by extracytosolic pH 5.0 in both voltage-dependent and -independent manners, and OcTPC3 was inhibited by pH 6.0 but potentiated by pH 8.0. Thus, the three OcTPCs form phosphoinositide-activated Na+ channels with different ligand selectivity, voltage dependence, and extracytosolic pH sensitivity, which likely are optimally tuned for function in specific endolysosomal populations.


Assuntos
Lisossomos , Fosfatidilinositóis , Animais , Células HEK293 , Humanos , Concentração de Íons de Hidrogênio , Íons , Mamíferos , Fosfatos de Fosfatidilinositol , Coelhos
2.
Proc Natl Acad Sci U S A ; 119(20): e2120870119, 2022 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-35544691

RESUMO

Transient receptor potential canonical 4 (TRPC4) is a receptor-operated cation channel codependent on both the Gq/11­phospholipase C signaling pathway and Gi/o proteins for activation. This makes TRPC4 an excellent coincidence sensor of neurotransmission through Gq/11- and Gi/o-coupled receptors. In whole-cell slice recordings of lateral septal neurons, TRPC4 mediates a strong depolarizing plateau that shuts down action potential firing, which may or may not be followed by a hyperpolarization that extends the firing pause to varying durations depending on the strength of Gi/o stimulation. We show that the depolarizing plateau is codependent on Gq/11-coupled group I metabotropic glutamate receptors and on Gi/o-coupled γ-aminobutyric acid type B receptors. The hyperpolarization is mediated by Gi/o activation of G protein­activated inwardly rectifying K+ (GIRK) channels. Moreover, the firing patterns, elicited by either electrical stimulation or receptor agonists, encode information about the relative strengths of Gq/11 and Gi/o inputs in the following fashion. Pure Gq/11 input produces weak depolarization accompanied by firing acceleration, whereas pure Gi/o input causes hyperpolarization that pauses firing. Although coincident Gq/11­Gi/o inputs also pause firing, the pause is preceded by a burst, and both the pause duration and firing recovery patterns reflect the relative strengths of Gq/11 versus Gi/o inputs. Computer simulations demonstrate that different combinations of TRPC4 and GIRK conductances are sufficient to produce the range of firing patterns observed experimentally. Thus, concurrent neurotransmission through the Gq/11 and Gi/o pathways is converted to discernible electrical responses by the joint actions of TRPC4 and GIRK for communication to downstream neurons.


Assuntos
Potenciais de Ação , Canais de Potássio Corretores do Fluxo de Internalização Acoplados a Proteínas G , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP , Subunidades alfa de Proteínas de Ligação ao GTP , Neurônios , Transmissão Sináptica , Canais de Cátion TRPC , Animais , Comunicação Celular , Canais de Potássio Corretores do Fluxo de Internalização Acoplados a Proteínas G/fisiologia , Subunidades alfa de Proteínas de Ligação ao GTP/fisiologia , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/fisiologia , Camundongos , Neurônios/fisiologia , Canais de Cátion TRPC/fisiologia
3.
J Gen Physiol ; 153(2)2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33320167

RESUMO

TRPV3 is a temperature-sensitive, nonselective cation channel expressed prominently in skin keratinocytes. TRPV3 plays important roles in hair morphogenesis and maintenance of epidermal barrier function. Gain-of-function mutations of TRPV3 have been found in both humans and rodents and are associated with hair loss, pruritus, and dermatitis. Here, we study the mechanisms of acid regulation of TRPV3 by using site-directed mutagenesis, fluorescent intracellular calcium measurement, and whole-cell patch-clamp recording techniques. We show that, whereas extracellular acid inhibits agonist-induced TRPV3 activation through an aspartate residue (D641) in the selectivity filter, intracellular protons sensitize the channel through cytoplasmic C-terminal glutamate and aspartate residues (E682, E689, and D727). Neutralization of the three C-terminal residues presensitizes the channel to agonist stimulation. Molecular dynamic simulations revealed that charge neutralization of the three C-terminal residues stabilized the sensitized channel conformation and enhanced the probability of α-helix formation in the linker between the S6 transmembrane segment and TRP domain. We conclude that acid inhibits TRPV3 function from the extracellular side but facilitates it from the intracellular side. These novel mechanisms of TRPV3 proton sensing can offer new insights into the role of TRPV3 in the regulation of epidermal barrier permeability and skin disorders under conditions of tissue acidosis.


Assuntos
Prótons , Canais de Cátion TRPV , Queratinócitos , Técnicas de Patch-Clamp , Pele , Canais de Cátion TRPV/genética
4.
Neuropharmacology ; 184: 108408, 2021 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-33220305

RESUMO

Ongoing activity in nociceptors, a driver of spontaneous pain, can be generated in dorsal root ganglion neurons in the absence of sensory generator potentials if one or more of three neurophysiological alterations occur - prolonged depolarization of resting membrane potential (RMP), hyperpolarization of action potential (AP) threshold, and/or increased amplitude of depolarizing spontaneous fluctuations of membrane potential (DSFs) to bridge the gap between RMP and AP threshold. Previous work showed that acute, sustained exposure to serotonin (5-HT) hyperpolarized AP threshold and potentiated DSFs, leading to ongoing activity if a separate source of maintained depolarization was present. Cellular signaling pathways that increase DSF amplitude and promote ongoing activity acutely in nociceptors are not known for any neuromodulator. Here, isolated DRG neurons from male rats were used to define the pathway by which low concentrations of 5-HT enhance DSFs, hyperpolarize AP threshold, and promote ongoing activity. A selective 5-HT4 receptor antagonist blocked these 5-HT-induced hyperexcitable effects, while a selective 5-HT4 agonist mimicked the effects of 5-HT. Inhibition of cAMP effectors, protein kinase A (PKA) and exchange protein activated by cAMP (EPAC), attenuated 5-HT's hyperexcitable effects, but a blocker of hyperpolarization-activated cyclic nucleotide-gated (HCN) channels had no significant effect. 5-HT4-dependent PKA activation was specific to DRG neurons that bind isolectin B4 (a nonpeptidergic nociceptor marker). 5-HT's effects on AP threshold, DSFs, and ongoing activity were mimicked by a cAMP analog. Sustained exposure to 5-HT promotes ongoing activity in nonpeptidergic nociceptors through the Gs-coupled 5-HT4 receptor and downstream cAMP signaling involving both PKA and EPAC.


Assuntos
AMP Cíclico/metabolismo , Gânglios Espinais/metabolismo , Neurônios/metabolismo , Receptores 5-HT4 de Serotonina/metabolismo , Agonistas do Receptor 5-HT4 de Serotonina/metabolismo , Serotonina/metabolismo , Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/fisiologia , Animais , Células Cultivadas , Relação Dose-Resposta a Droga , Gânglios Espinais/efeitos dos fármacos , Masculino , Neurônios/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Serotonina/farmacologia , Agonistas do Receptor 5-HT4 de Serotonina/farmacologia
5.
Curr Opin Physiol ; 17: 34-41, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32851198

RESUMO

TRPC channels are Ca2+-permeable nonselective cation channels activated downstream from phospholipase C (PLC). Although most TRPC channels can be activated by stimulating Gq/11-coupled receptors, TRPC4 requires simultaneous stimulation of Gi/o-coupled receptors, making it a perfect detector of coincident Gi/o and Gq/11 signaling. Evidence shows that activated Gαi/o proteins work together with PLCδ1 to induce robust TRPC4 activation and the process is accelerated by stimulation of other PLC isozymes, such as PLCß through Gq/11 proteins. Mechanistically, Gq/11-PLCß activation produces triggering proton and calcium signals to initiate self-propagating PLCδ1 activity, crucial for Gi/o-mediated TRPC4 function. Thus, TRPC4-containing channels are activated under conditions not only when coincident Gi/o and Gq/11 stimulation occurs, but also when Gi/o stimulation coincides with proton and Ca2+ signals. The resulting cytosolic Ca2+ rise and membrane depolarization switch the inhibitory Gi/o response to excitation. The conditions and implications of Gi/o-mediated TRPC4 activation in physiology and pathophysiology warrant further investigation.

6.
EMBO Rep ; 21(7): e49210, 2020 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-32462726

RESUMO

The current obesity epidemic mainly results from high-fat high-caloric diet (HFD) feeding and may also be contributed by chronic stress; however, the neural basis underlying stress-related diet-induced obesity remains unknown. Corticotropin-releasing hormone (CRH) neurons in the paraventricular hypothalamus (PVH), a known body weight-regulating region, represent one key group of stress-responsive neurons. Here, we found that HFD feeding blunted PVH CRH neuron response to nutritional challenges as well as stress stimuli and dexamethesone, which normally produce rapid activation and inhibition on these neurons, respectively. We generated mouse models with the activity of these neurons clamped at high or low levels, both of which showed HFD-mimicking, blunted PVH CRH neuron responsiveness. Strikingly, both models developed rapid HFD-induced obesity, associated with HFD-mimicking, reduced diurnal rhythmicity in feeding and energy expenditure. Thus, blunted responsiveness of PVH CRH neurons, but not their absolute activity levels, underlies HFD-induced obesity and may also contribute to stress-induced obesity.


Assuntos
Obesidade , Hormônios Liberadores de Hormônios Hipofisários , Animais , Hormônio Liberador da Corticotropina/genética , Hormônio Liberador da Corticotropina/metabolismo , Hipotálamo/metabolismo , Camundongos , Neurônios/metabolismo , Obesidade/etiologia
7.
J Physiol ; 598(13): 2651-2667, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32338378

RESUMO

KEY POINTS: Receptor-operated activation of TRPC4 cation channels requires Gi/o proteins and phospholipase-Cδ1 (PLCδ1) activation by intracellular Ca2+ . Concurrent stimulation of the Gq/11 pathway accelerates Gi/o activation of TRPC4, which is not mimicked by increasing cytosolic Ca2+ . The kinetic effect of Gq/11 was diminished by alkaline intracellular pH (pHi ) and increased pHi buffer capacity. Acidic pHi (6.75-6.25) together with the cytosolic Ca2+ rise accelerated Gi/o -mediated TRPC4 activation. Protons exert their facilitation effect through Ca2+ -dependent activation of PLCδ1. The data suggest that the Gq/11 -PLCß pathway facilitates Gi/o activation of TRPC4 through hydrolysing phosphatidylinositol 4,5-bisphosphate (PIP2 ) to produce the initial proton signal that triggers a self-propagating PLCδ1 activity supported by regenerative H+ and Ca2+ . The findings provide novel mechanistic insights into receptor-operated TRPC4 activation by coincident Gq/11 and Gi/o pathways and shed light on how aberrant activation of TRPC4 may occur under pathological conditions to cause cell damage. ABSTRACT: Transient Receptor Potential Canonical 4 (TRPC4) forms non-selective cation channels activated downstream from receptors that signal through G proteins. Our recent work suggests that TRPC4 channels are particularly coupled to pertussis toxin-sensitive Gi/o proteins, with a co-dependence on phospholipase-Cδ1 (PLCδ1). The Gi/o -mediated TRPC4 activation is dually dependent on and bimodally regulated by phosphatidylinositol 4,5-bisphosphate (PIP2 ), the substrate hydrolysed by PLC, and intracellular Ca2+ . As a byproduct of PLC-mediated PIP2 hydrolysis, protons have been shown to play an important role in the activation of Drosophila TRP channels. However, how intracellular pH affects mammalian TRPC channels remains obscure. Here, using patch-clamp recordings of HEK293 cells heterologously co-expressing mouse TRPC4ß and the Gi/o -coupled µ opioid receptor, we investigated the role of intracellular protons on Gi/o -mediated TRPC4 activation. We found that acidic cytosolic pH greatly accelerated the rate of TRPC4 activation without altering the maximal current density and this effect was dependent on intracellular Ca2+ elevation. However, protons did not accelerate channel activation by directly acting upon TRPC4. We additionally demonstrated that protons exert their effect through sensitization of PLCδ1 to Ca2+ , which in turn promotes PLCδ1 activity and further potentiates TRPC4 via a positive feedback mechanism. The mechanism elucidated here helps explain how Gi/o and Gq/11 co-stimulation induces a faster activation of TRPC4 than Gi/o activation alone and highlights again the critical role of PLCδ1 in TRPC4 gating.


Assuntos
Cálcio , Canais de Cátion TRPC , Animais , Cálcio/metabolismo , Células HEK293 , Humanos , Concentração de Íons de Hidrogênio , Camundongos , Fosfolipase C delta , Fosfolipase D
8.
Front Cell Dev Biol ; 8: 618663, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33490083

RESUMO

The seven canonical members of transient receptor potential (TRPC) proteins form cation channels that evoke membrane depolarization and intracellular calcium concentration ([Ca2+] i ) rise, which are not only important for regulating cell function but their deregulation can also lead to cell damage. Recent studies have implicated complex roles of TRPC channels in neurodegenerative diseases including ischemic stroke. Brain ischemia reduces oxygen and glucose supply to neurons, i.e., Oxygen and Glucose Deprivation (OGD), resulting in [Ca2+] i elevation, ion dyshomeostasis, and excitotoxicity, which are also common in many forms of neurodegenerative diseases. Although ionotropic glutamate receptors, e.g., N-methyl-D-aspartate receptors, are well established to play roles in excitotoxicity, the contribution of metabotropic glutamate receptors and their downstream effectors, i.e., TRPC channels, should not be neglected. Here, we summarize the current findings about contributions of TRPC channels in neurodegenerative diseases, with a focus on OGD-induced neuronal death and rodent models of cerebral ischemia/reperfusion. TRPC channels play both detrimental and protective roles to neurodegeneration depending on the TRPC subtype and specific pathological conditions involved. When illustrated the mechanisms by which TRPC channels are involved in neuronal survival or death seem differ greatly, implicating diverse and complex regulation. We provide our own data showing that TRPC1/C4/C5, especially TRPC4, may be generally detrimental in OGD and cerebral ischemia/reperfusion. We propose that although TRPC channels significantly contribute to ischemic neuronal death, detailed mechanisms and specific roles of TRPC subtypes in brain injury at different stages of ischemia/reperfusion and in different brain regions need to be carefully and systematically investigated.

9.
Sci Adv ; 5(3): eaav1640, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30854429

RESUMO

Animals must consider competing information before deciding to eat: internal signals indicating the desirability of food and external signals indicating the risk involved in eating within a particular environment. The behaviors driven by the former are manifestations of hunger, and the latter, anxiety. The connection between pathologic anxiety and reduced eating in conditions like typical depression and anorexia is well known. Conversely, anti-anxiety drugs such as benzodiazepines increase appetite. Here, we show that GABAergic neurons in the diagonal band of Broca (DBBGABA) are responsive to indications of risk and receive monosynaptic inhibitory input from lateral hypothalamus GABAergic neurons (LHGABA). Activation of this circuit reduces anxiety and causes indiscriminate feeding. We also found that diazepam rapidly reduces DBBGABA activity while inducing indiscriminate feeding. Our study reveals that the LHGABA→DBBGABA neurocircuit overrides anxiogenic environmental cues to allow feeding and that this pathway may underlie the link between eating and anxiety-related disorders.


Assuntos
Prosencéfalo Basal/fisiologia , Sinais (Psicologia) , Meio Ambiente , Comportamento Alimentar , Região Hipotalâmica Lateral/fisiologia , Rede Nervosa , Animais , Ansiedade , Neurônios GABAérgicos/fisiologia , Camundongos , Transmissão Sináptica
10.
Adv Exp Med Biol ; 993: 239-255, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28900918

RESUMO

Transient receptor potential canonical (TRPC) proteins were identified as molecular candidates of receptor- and/or store-operated channels because of their close homology to the Drosophila TRP and TRPL. Functional studies have revealed that TRPC channels play an integrated part of phospholipase C-transduced cell signaling, mediating the influx of both Ca2+ and Na+ into cells. As a consequence, the TRPC channels have diverse functional roles in different cell types, including metabotropic receptor-evoked membrane depolarization and intracellular Ca2+ concentration elevation. Depending on the cellular environment and the protein partners present in the channel complex, the TRPC channels display different biophysical properties and mechanisms of regulation, including but not limited to the Ca2+ filling state of the endoplasmic reticulum. Despite the overwhelming focus on STIM-regulated Orai channels for store-operated Ca2+ entry, evidence is growing for STIM-operated TRPC channel activities in various cell types, demonstrating both store-dependent and store-independent mechanisms of TRPC channel gating. The existence of physical and functional interactions between plasma membrane-localized TRPC channels and other proteins involved in sensing and regulating the intracellular Ca2+ store contents, such as inositol trisphosphate receptors, Junctate, and Homer, further argues for the role of TRPC proteins in linking plasma membrane ion transport with intracellular Ca2+ stores. The interplay among these proteins will likely define the functional significance of TRPC channel activation in different cellular contexts and under different modes of stimulations.


Assuntos
Canais de Cálcio/metabolismo , Sinalização do Cálcio/fisiologia , Cálcio/metabolismo , Membrana Celular/metabolismo , Retículo Endoplasmático/metabolismo , Transporte de Íons/fisiologia , Canais de Cátion TRPC/metabolismo , Animais , Humanos
11.
Am J Physiol Renal Physiol ; 312(6): F1081-F1089, 2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28274924

RESUMO

The large-conductance Ca2+-activated K+ channel, BK (KCNMA1), is expressed along the connecting tubule (CNT) and cortical collecting duct (CCD) where it underlies flow- and Ca2+-dependent K+ secretion. Its activity is partially under the control of the mechanosensitive transient receptor potential vanilloid type 4 (TRPV4) Ca2+-permeable channel. Recently, we identified three small-/intermediate-conductance Ca2+-activated K+ channels, SK1 (KCNN1), SK3 (KCNN3), and IK1 (KCNN4), with notably high Ca2+-binding affinities, that are expressed in CNT/CCD and may be regulated by TRPV4-mediated Ca2+ influx. The K+-secreting CCD mCCDcl1 cells, which express these channels, were used to determine whether SK1/3 and IK1 are activated on TRPV4 stimulation and whether they contribute to Ca2+ influx and activation of BK. Activation of TRPV4 (GSK1016790A) modestly depolarized the membrane potential and robustly increased intracellular Ca2+, [Ca2+]i Inhibition of both SK1/3 and IK1 by application of apamin and 1-[(2-chlorophenyl)diphenylmethyl]-1H-pyrazole (TRAM-34), respectively, further depolarized the membrane potential and markedly suppressed the TRPV4-mediated rise in [Ca2+]i Application of BK inhibitor iberiotoxin after activation of TRPV4 without apamin/TRAM-34 also reduced [Ca2+]i and further intensified membrane depolarization, demonstrating BK involvement. However, the BK-dependent effects on [Ca2+]i and membrane potential were largely abolished by pretreatment with apamin and TRAM-34, identical to that observed by separately suppressing TRPV4-mediated Ca2+ influx, demonstrating that SK1/3-IK1 channels potently contribute to TRPV4-mediated BK activation. Our data indicate a direct correlation between TRPV4-mediated Ca2+ signal and BK activation but where early activation of SK1/3 and IK1 channels are critical to sufficiently enhanced Ca2+ entry and [Ca2+]i levels required for activation of BK.


Assuntos
Cálcio/metabolismo , Canais de Potássio Ativados por Cálcio de Condutância Intermediária/metabolismo , Túbulos Renais Coletores/metabolismo , Subunidades alfa do Canal de Potássio Ativado por Cálcio de Condutância Alta/metabolismo , Potássio/metabolismo , Canais de Potássio Ativados por Cálcio de Condutância Baixa/metabolismo , Canais de Cátion TRPV/metabolismo , Animais , Agonistas dos Canais de Cálcio/farmacologia , Sinalização do Cálcio , Células Cultivadas , Canais de Potássio Ativados por Cálcio de Condutância Intermediária/antagonistas & inibidores , Túbulos Renais Coletores/efeitos dos fármacos , Subunidades alfa do Canal de Potássio Ativado por Cálcio de Condutância Alta/antagonistas & inibidores , Potenciais da Membrana , Camundongos , Bloqueadores dos Canais de Potássio/farmacologia , Canais de Potássio Ativados por Cálcio de Condutância Baixa/antagonistas & inibidores , Canais de Cátion TRPV/agonistas
12.
Nat Neurosci ; 20(3): 385-388, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28135239

RESUMO

The hypothalamic-pituitary-adrenal axis is a pivotal component of an organism's response to stressful challenges, and dysfunction of this neuroendocrine axis is associated with a variety of physiological and psychological pathologies. We found that corticotropin-releasing factor type 1 receptor within the paraventricular nucleus of the hypothalamus is an important central component of hypothalamic-pituitary-adrenal axis regulation that prepares the organism for successive exposure to stressful stimuli.


Assuntos
Sistema Hipotálamo-Hipofisário/fisiologia , Núcleo Hipotalâmico Paraventricular/fisiologia , Sistema Hipófise-Suprarrenal/fisiologia , Receptores de Hormônio Liberador da Corticotropina/fisiologia , Estresse Fisiológico/fisiologia , Estresse Psicológico/fisiopatologia , Animais , Hormônio Liberador da Corticotropina/farmacologia , Hormônio Liberador da Corticotropina/fisiologia , Cortisona/sangue , Locomoção/fisiologia , Masculino , Aprendizagem em Labirinto/fisiologia , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Receptores de Hormônio Liberador da Corticotropina/genética
13.
PLoS One ; 11(5): e0155006, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27159616

RESUMO

The voltage- and Ca2+-activated, large conductance K+ channel (BK, maxi-K) is expressed in the collecting duct system of kidney where it underlies flow- and Ca2+-dependent K+ excretion. To determine if other Ca2+-activated K+ channels (KCa) may participate in this process, mouse kidney and the K+-secreting mouse cortical collecting duct (CCD) cell line, mCCDcl1, were assessed for TRPV4 and KCa channel expression and cross-talk. qPCR mRNA analysis and immunocytochemical staining demonstrated TRPV4 and KCa expression in mCCDcl1 cells and kidney connecting tubule (CNT) and CCD. Three subfamilies of KCa channels were revealed: the high Ca2+-binding affinity small-conductance SK channels, SK1and SK3, the intermediate conductance channel, IK1, and the low Ca2+-binding affinity, BK channel (BKα subunit). Apparent expression levels varied in CNT/CCD where analysis of CCD principal cells (PC) and intercalated cells (IC) demonstrated differential staining: SK1:PCIC, IK1:PC>IC, BKα:PC = IC, and TRPV4:PC>IC. Patch clamp analysis and fluorescence Ca2+ imaging of mCCDcl1 cells demonstrated potent TRPV4-mediated Ca2+ entry and strong functional cross-talk between TRPV4 and KCa channels. TRPV4-mediated Ca2+ influx activated each KCa channel, as evidenced by selective inhibition of KCa channels, with each active KCa channel enhancing Ca2+ entry (due to membrane hyperpolarization). Transepithelial electrical resistance (TEER) analysis of confluent mCCDcl1 cells grown on permeable supports further demonstrated this cross-talk where TRPV4 activation induce a decrease in TEER which was partially restored upon selective inhibition of each KCa channel. It is concluded that SK1/SK3 and IK1 are highly expressed along with BKα in CNT and CCD and are closely coupled to TRPV4 activation as observed in mCCDcl1 cells. The data support a model in CNT/CCD segments where strong cross talk between TRPV4-mediated Ca2+ influx and each KCa channel leads to enhance Ca2+ entry which will support activation of the low Ca2+-binding affinity BK channel to promote BK-mediated K+ secretion.


Assuntos
Túbulos Renais Coletores/metabolismo , Canais de Potássio Cálcio-Ativados/metabolismo , Canais de Cátion TRPV/metabolismo , Animais , Linhagem Celular , Camundongos , Camundongos Endogâmicos C57BL
14.
Biochem J ; 473(10): 1379-90, 2016 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-26987813

RESUMO

Transient receptor potential canonical 4 (TRPC4) forms non-selective cation channels implicated in the regulation of diverse physiological functions. Previously, TRPC4 was shown to be activated by the Gi/o subgroup of heterotrimeric G-proteins involving Gαi/o, rather than Gßγ, subunits. Because the lifetime and availability of Gα-GTP are regulated by regulators of G-protein signalling (RGS) and Gαi/o-Loco (GoLoco) domain-containing proteins via their GTPase-activating protein (GAP) and guanine-nucleotide-dissociation inhibitor (GDI) functions respectively, we tested how RGS and GoLoco domain proteins affect TRPC4 currents activated via Gi/o-coupled receptors. Using whole-cell patch-clamp recordings, we show that both RGS and GoLoco proteins [RGS4, RGS6, RGS12, RGS14, LGN or activator of G-protein signalling 3 (AGS3)] suppress receptor-mediated TRPC4 activation without causing detectable basal current or altering surface expression of the channel protein. The inhibitory effects are dependent on the GAP and GoLoco domains and facilitated by enhancing membrane targeting of the GoLoco protein AGS3. In addition, RGS, but not GoLoco, proteins accelerate desensitization of receptor-activation evoked TRPC4 currents. The inhibitory effects of RGS and GoLoco domains are additive and are most prominent with RGS12 and RGS14, which contain both RGS and GoLoco domains. Our data support the notion that the Gα, but not Gßγ, arm of the Gi/o signalling is involved in TRPC4 activation and unveil new roles for RGS and GoLoco domain proteins in fine-tuning TRPC4 activities. The versatile and diverse functions of RGS and GoLoco proteins in regulating G-protein signalling may underlie the complexity of receptor-operated TRPC4 activation in various cell types under different conditions.


Assuntos
Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Canais de Cátion TRPC/metabolismo , Western Blotting , Eletrofisiologia , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/genética , Proteínas de Ligação ao GTP/genética , Inibidores de Dissociação do Nucleotídeo Guanina/genética , Inibidores de Dissociação do Nucleotídeo Guanina/metabolismo , Células HEK293 , Proteínas Heterotriméricas de Ligação ao GTP/genética , Proteínas Heterotriméricas de Ligação ao GTP/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Mutação Puntual , Ligação Proteica , Proteínas RGS/genética , Proteínas RGS/metabolismo , Transdução de Sinais , Canais de Cátion TRPC/genética
15.
Sci Rep ; 6: 20791, 2016 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-26876731

RESUMO

Temperature-sensitive TRP channels are important for responses to pain and inflammation, to both of which tissue acidosis is a major contributing factor. However, except for TRPV1, acid-sensing by other ThermoTRP channels remains mysterious. We show here that unique among TRPV1-3 channels, TRPV3 is directly activated by protons from cytoplasmic side. This effect is very weak and involves key cytoplasmic residues L508, D512, S518, or A520. However, mutations of these residues did not affect a strong proton induced potentiation of TRPV3 currents elicited by the TRPV1-3 common agonist, 2-aminoethoxydiphenyl borate (2-APB), no matter if the ligand was applied from extracellular or cytoplasmic side. The acid potentiation was common among TRPV1-3 and only seen with 2-APB-related ligands. Using (1)H-nuclear magnetic resonance to examine the solution structures of 2-APB and its analogs, we observed striking structural differences of the boron-containing compounds at neutral/basic as compared to acidic pH, suggesting that a pH-dependent configuration switch of 2-APB-based drugs may underlie their functionality. Supporting this notion, protons also enhanced the inhibitory action of 2-APB on TRPM8. Collectively, our findings reveal novel insights into 2-APB action on TRP channels, which should facilitate the design of new drugs for these channels.


Assuntos
Compostos de Boro/química , Prótons , Canais de Cátion TRPV/química , Motivos de Aminoácidos , Animais , Expressão Gênica , Células HEK293 , Humanos , Concentração de Íons de Hidrogênio , Espectroscopia de Ressonância Magnética , Camundongos , Mutação , Técnicas de Patch-Clamp , Plasmídeos/química , Plasmídeos/metabolismo , Ratos , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Canais de Cátion TRPV/genética , Canais de Cátion TRPV/metabolismo , Temperatura , Transfecção
16.
Proc Natl Acad Sci U S A ; 113(4): 1092-7, 2016 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-26755577

RESUMO

Transient Receptor Potential Canonical (TRPC) proteins form nonselective cation channels commonly known to be activated downstream from receptors that signal through phospholipase C (PLC). Although TRPC3/C6/C7 can be directly activated by diacylglycerols produced by PLC breakdown of phosphatidylinositol 4,5-bisphosphate (PIP2), the mechanism by which the PLC pathway activates TRPC4/C5 remains unclear. We show here that TRPC4 activation requires coincident stimulation of Gi/o subgroup of G proteins and PLCδ, with a preference for PLCδ1 over PLCδ3, but not necessarily the PLCß pathway commonly thought to be involved in receptor-operated TRPC activation. In HEK293 cells coexpressing TRPC4 and Gi/o-coupled µ opioid receptor, µ agonist elicited currents biphasically, with an initial slow phase preceding a rapidly developing phase. The currents were dependent on intracellular Ca(2+) and PIP2. Reducing PIP2 through phosphatases abolished the biphasic kinetics and increased the probability of channel activation by weak Gi/o stimulation. In both HEK293 cells heterologously expressing TRPC4 and renal carcinoma-derived A-498 cells endogenously expressing TRPC4, channel activation was inhibited by knocking down PLCδ1 levels and almost completely eliminated by a dominant-negative PLCδ1 mutant and a constitutively active RhoA mutant. Conversely, the slow phase of Gi/o-mediated TRPC4 activation was diminished by inhibiting RhoA or enhancing PLCδ function. Our data reveal an integrative mechanism of TRPC4 on detection of coincident Gi/o, Ca(2+), and PLC signaling, which is further modulated by the small GTPase RhoA. This mechanism is not shared with the closely related TRPC5, implicating unique roles of TRPC4 in signal integration in brain and other systems.


Assuntos
Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/fisiologia , Fosfolipase C delta/fisiologia , Canais de Cátion TRPC/fisiologia , Cálcio/metabolismo , Carbacol/farmacologia , Ala(2)-MePhe(4)-Gly(5)-Encefalina/farmacologia , Células HEK293 , Humanos , Transdução de Sinais , Proteína rhoA de Ligação ao GTP/fisiologia
17.
J Neurosci ; 35(6): 2612-23, 2015 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-25673853

RESUMO

Recent studies have found that those who suffer from posttraumatic stress disorder (PTSD) are more likely to experience dementia as they age, most often Alzheimer's disease (AD). These findings suggest that the symptoms of PTSD might have an exacerbating effect on AD progression. AD and PTSD might also share common susceptibility factors such that those who experience trauma-induced disease were already more likely to succumb to dementia with age. Here, we explored these two hypotheses using a mouse model of PTSD in wild-type and AD model animals. We found that expression of human familial AD mutations in amyloid precursor protein and presenilin 1 leads to sensitivity to trauma-induced PTSD-like changes in behavioral and endocrine stress responses. PTSD-like induction, in turn, chronically elevates levels of CSF ß-amyloid (Aß), exacerbating ongoing AD pathogenesis. We show that PTSD-like induction and Aß elevation are dependent on corticotropin-releasing factor (CRF) receptor 1 signaling and an intact hypothalamic-pituitary-adrenal axis. Furthermore, we show that Aß species can hyperexcite CRF neurons, providing a mechanism by which Aß influences stress-related symptoms and PTSD-like phenotypes. Consistent with Aß causing excitability of the stress circuitry, we attenuate PTSD-like phenotypes in vivo by lowering Aß levels during PTSD-like trauma exposure. Together, these data demonstrate that exposure to PTSD-like trauma can drive AD pathogenesis, which directly perturbs CRF signaling, thereby enhancing chronic PTSD symptoms while increasing risk for AD-related dementia.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Hormônio Liberador da Corticotropina/metabolismo , Neurônios/metabolismo , Transtornos de Estresse Pós-Traumáticos/metabolismo , Estresse Psicológico/metabolismo , Corticosteroides/líquido cefalorraquidiano , Doença de Alzheimer/metabolismo , Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Animais , Comportamento Animal , Células CHO , Cricetulus , Técnicas de Introdução de Genes , Camundongos , Cultura Primária de Células , Transtornos de Estresse Pós-Traumáticos/psicologia , Estresse Psicológico/psicologia
18.
Exp Neurol ; 236(2): 351-62, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22575600

RESUMO

Stress and glucocorticoids exacerbate pain via undefined mechanisms. Macrophage migration inhibitory factor (MIF) is a constitutively expressed protein that is secreted to maintain immune function when glucocorticoids are elevated by trauma or stress. Here we show that MIF is essential for the development of neuropathic and inflammatory pain, and for stress-induced enhancement of neuropathic pain. Mif null mutant mice fail to develop pain-like behaviors in response to inflammatory stimuli or nerve injury. Pharmacological inhibition of MIF attenuates pain-like behaviors caused by nerve injury and prevents sensitization of these behaviors by stress. Conversely, injection of recombinant MIF into naïve mice produces dose-dependent mechanical sensitivity that is exacerbated by stress. MIF elicits pro-inflammatory signaling in microglia and activates sensory neurons, mechanisms that underlie pain. These data implicate MIF as a key regulator of pain and provide a mechanism whereby stressors exacerbate pain. MIF inhibitors warrant clinical investigation for the treatment of chronic pain.


Assuntos
Oxirredutases Intramoleculares/fisiologia , Fatores Inibidores da Migração de Macrófagos/fisiologia , Neuralgia/metabolismo , Neuralgia/patologia , Estresse Psicológico/metabolismo , Animais , Células Cultivadas , Feminino , Gânglios Espinais/metabolismo , Gânglios Espinais/patologia , Humanos , Inflamação/genética , Inflamação/metabolismo , Inflamação/patologia , Oxirredutases Intramoleculares/deficiência , Fatores Inibidores da Migração de Macrófagos/deficiência , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neuralgia/genética , Medição da Dor/métodos , Ratos Sprague-Dawley , Estresse Psicológico/genética , Estresse Psicológico/patologia , Regulação para Cima/genética
19.
J Biol Chem ; 286(38): 33436-46, 2011 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-21795696

RESUMO

Transient receptor potential canonical (TRPC) channels are Ca(2+)-permeable nonselective cation channels implicated in diverse physiological functions, including smooth muscle contractility and synaptic transmission. However, lack of potent selective pharmacological inhibitors for TRPC channels has limited delineation of the roles of these channels in physiological systems. Here we report the identification and characterization of ML204 as a novel, potent, and selective TRPC4 channel inhibitor. A high throughput fluorescent screen of 305,000 compounds of the Molecular Libraries Small Molecule Repository was performed for inhibitors that blocked intracellular Ca(2+) rise in response to stimulation of mouse TRPC4ß by µ-opioid receptors. ML204 inhibited TRPC4ß-mediated intracellular Ca(2+) rise with an IC(50) value of 0.96 µm and exhibited 19-fold selectivity against muscarinic receptor-coupled TRPC6 channel activation. In whole-cell patch clamp recordings, ML204 blocked TRPC4ß currents activated through either µ-opioid receptor stimulation or intracellular dialysis of guanosine 5'-3-O-(thio)triphosphate (GTPγS), suggesting a direct interaction of ML204 with TRPC4 channels rather than any interference with the signal transduction pathways. Selectivity studies showed no appreciable block by 10-20 µm ML204 of TRPV1, TRPV3, TRPA1, and TRPM8, as well as KCNQ2 and native voltage-gated sodium, potassium, and calcium channels in mouse dorsal root ganglion neurons. In isolated guinea pig ileal myocytes, ML204 blocked muscarinic cation currents activated by bath application of carbachol or intracellular infusion of GTPγS, demonstrating its effectiveness on native TRPC4 currents. Therefore, ML204 represents an excellent novel tool for investigation of TRPC4 channel function and may facilitate the development of therapeutics targeted to TRPC4.


Assuntos
Indóis/farmacologia , Piperidinas/farmacologia , Canais de Cátion TRPC/antagonistas & inibidores , Animais , Cátions/metabolismo , Feminino , Corantes Fluorescentes/metabolismo , Células HEK293 , Ensaios de Triagem em Larga Escala , Humanos , Indóis/química , Intestinos/citologia , Ativação do Canal Iônico/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/metabolismo , Piperidinas/química , Receptores Muscarínicos/metabolismo , Receptores Opioides mu/antagonistas & inibidores , Receptores Opioides mu/metabolismo , Relação Estrutura-Atividade , Canais de Cátion TRPC/metabolismo
20.
J Neurosci Res ; 85(9): 1996-2005, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17471557

RESUMO

Corticotropin releasing factor (CRF) and its cognate receptors, defined as Type 1 and Type 2 have been localized within the cerebellum. The Type 2 CRF receptor (CRF-R2) is known to have both a full length (CRF-R2alpha) and a truncated (CRF-R2alpha-tr) isoform. A recent study documented CRF-R2alpha primarily in Bergann glia and astrocytes, as well as in populations of Purkinje cells in the adult cerebellum. The goal of the present study is to determine if CRF-R2alpha is present in the postnatal cerebellum, and if so to describe its cellular distribution. RT-PCR data showed that CRF-R2alpha is expressed in the mouse cerebellum from birth through postnatal day 21. Between birth and P14, CRF-R2alpha-immunoreactivity was localized within the somata of Purkinje cells, and migrating GABAergic interneurons. GFAP-immunoreactive astrocytes, including Bergmann glia, also expressed CRF-R2alpha-immunoreactivity from P3-P14. There is a change, however, in CRF-R2alpha immunolabeling within neurons as the cerebellum matures. Compared to its expression in the adult cerebellum, Purkinje cells, and GABAergic interneurons showed more extensive CRF-R2alpha immunolabeling during early postnatal development. We postulate that CRF-R2alpha could be involved in developmental events related to the survival and differentiation of Purkinje cells and GABAergic neurons, whereas in the adult, this isoform of the CRF receptor family is likely involved in modulating Bergmann glia that have been shown to play a role in regulating the synaptic environment around Purkinje neurons.


Assuntos
Córtex Cerebelar/metabolismo , Receptores de Hormônio Liberador da Corticotropina/metabolismo , Animais , Córtex Cerebelar/crescimento & desenvolvimento , Hormônio Liberador da Corticotropina/metabolismo , Imunofluorescência , Processamento de Imagem Assistida por Computador , Imuno-Histoquímica , Interneurônios/fisiologia , Isomerismo , Camundongos , Camundongos Endogâmicos C57BL , Neuroglia/metabolismo , Células de Purkinje/metabolismo , RNA Mensageiro/análise , RNA Mensageiro/biossíntese , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Ácido gama-Aminobutírico/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...