Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Metab Brain Dis ; 38(8): 2849-2864, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37906393

RESUMO

INTRODUCTION: Chaigui granules are a novel manufactured traditional Chinese antidepressant medicine, which is originated from the ancient classical prescription of Xiaoyaosan. It ameliorated depression-like behavior and concomitant symptoms in animal models. But its antidepressant mechanism is still unclear. Therefore, network pharmacology and molecular biology were used to explore underlying antidepressant mechanism in this study. METHODS: Firstly, network pharmacology was used to screen main active ingredients and potential targets in the treatment of depression with Chaigui granules, and to perform pathway enrichment analysis. Secondly, chronic and unpredictable mild stress-induced depression model rats were used, and behavioral tests were used to evaluate the antidepressant effect of Chaigui granules. Finally, the core targets and key pathways predicted by network pharmacology were validated by qRT-PCR and Western blot to determine the relevant gene and protein expression levels in rat hippocampus. RESULTS: The results of network pharmacology indicated that the PI3K/Akt signaling pathway may play a key role in antidepressant of Chaigui granules. The results of animal experiments showed that Chaigui granules significantly modulated behavioral indicators. Subsequently, the upregulation of relative mRNA levels of mTOR, Akt and PI3K and downregulation of GSK-3ß and FoxO3a were observed in rat hippocampus by molecular biology diagnosis. In addition, the decreased expression of Akt and mTOR in CUMS rats hippocampus was significantly reversed, and the expression levels of GSK-3ß and FoxO3a were upregulated. CONCLUSIONS: Based on the results of network pharmacology and animal experiment validation, Chaigui granules may reverse CUMS-induced depression-like behavior in rats through PI3K/Akt/mTOR signaling pathway.


Assuntos
Depressão , Proteínas Proto-Oncogênicas c-akt , Ratos , Animais , Depressão/tratamento farmacológico , Depressão/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo , Farmacologia em Rede , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , Antidepressivos/farmacologia , Antidepressivos/uso terapêutico
2.
J Affect Disord ; 331: 121-129, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-36948469

RESUMO

BACKGROUND: Existing research has suggested that depression results in disorders of glucose metabolism in the organism which causing insufficient energy supply. However, the overall changes in glucose metabolism that arise from depression have not been clarified. METHODS: In this study, the depression-like behavior in chronically unpredictable mild stressed rats was investigated, and the fate of glucose was tracked through isotope tracing and mass spectrometry, with a focus on metabolite changes in cecal contents. RESULTS: As indicated by the results, the isotopic results of cecal contents can indicate the metabolic end of the organism. Moreover, the TCA cycle activity was notably reduced, and the gluconeogenesis pathway was abnormally up-regulated in the CUMS-induced rats. The organism expedited other glucose metabolism pathways to make up for the insufficiency of energy. As a result, the activity of the inefficient glycolysis pathway was increased. LIMITATIONS: Existing research has only investigated the metabolism of 13C-glucose, and lipids and proteins have been rarely explored. CONCLUSIONS: The chronic unpredictable mild stress can inhibit the entry of pyruvate into mitochondria in SD rats, such that the activity of TCA is reduced, and insufficient energy supply is caused. The organism is capable of expediting other glucose metabolism rate pathways to make up for the insufficiency of energy, whereas it still cannot compensate for the loss of energy. As a result, CUMS-induced rats exhibited high-rate and low-efficiency glucose metabolism.


Assuntos
Depressão , Metabolômica , Ratos , Animais , Ratos Sprague-Dawley , Metabolômica/métodos , Glucose , Estresse Psicológico/metabolismo , Modelos Animais de Doenças
3.
J Ethnopharmacol ; 300: 115702, 2023 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-36099982

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: In traditional Chinese medicine (TCM) theory, depression is an emotional disease, which is thought to be related to stagnation of liver qi and dysfunction of the spleen in transport. Xiaoyao San (XYS) is considered to have the effects of soothing liver-qi stagnation and invigorating the spleen. The spleen has the function to transport and transform nutrients. The liver has also termed the center of energy metabolism in the body. Therefore, exploring the antidepressant effects of XYS from the perspective of energy metabolism may reveal new findings. AIM OF THE STUDY: Glucose catabolism is an important part of energy metabolism. In recent years, several researchers have found that XYS can exert antidepressant effects by modulating abnormalities in glucose catabolism-related metabolites. The previous research of our research group found that the hippocampus glucose catabolism was disordered in depression. However, the antidepressant potential of XYS through modulating the disorders of hippocampal glucose catabolism and the specific metabolic pathways and targets of XYS action were still unknown. The aim of this study was to address the above scientific questions. MATERIALS AND METHODS: In this research, the CUMS (chronic unpredictable mild stress) model was used as the animal model of depression. The antidepressant effect of XYS was evaluated by behavioral indicators. The specific pathways and targets of XYS modulating the disorders of glucose catabolism in the hippocampus of CUMS rats were obtained by stable isotope-resolved metabolomics. Further, the isotope tracing results were also verified by molecular biology and electron transmission electron microscopy. RESULTS: The results demonstrated that XYS pretreatment could significantly improve the depressive symptoms induced by CUMS. More importantly, it was found that XYS could modulate the disorders of glucose catabolism in the hippocampus of CUMS rats. Stable isotope-resolved metabolomics and enzyme activity tests showed that Lactate dehydrogenase (LDH), Pyruvate carboxylase (PC), and Pyruvate dehydrogenase (PDH) were targets of XYS for modulating the disorders of glucose catabolism in the hippocampus of CUMS rats. The Succinate dehydrogenase (SDH) and mitochondrial respiratory chain complex V (MRCC-Ⅴ) were targets of XYS to improve abnormal mitochondrial oxidative phosphorylation in the hippocampus of CUMS rats. XYS was also found to have the ability to improve the structural damage of mitochondria and nuclei in the hippocampal caused by CUMS. CONCLUSIONS: This study was to explore the antidepressant effect of XYS from the perspective of glucose catabolism based on a strategy combining stable isotope tracing, molecular biology techniques, and transmission electron microscopy. We not only obtained the specific pathways and targets of XYS to improve the disorders of glucose catabolism in the hippocampus of CUMS rats, but also revealed the specific targets of the pathways of XYS compared with VLF.


Assuntos
Medicamentos de Ervas Chinesas , Succinato Desidrogenase , Animais , Antidepressivos/farmacologia , Antidepressivos/uso terapêutico , Comportamento Animal , Depressão/psicologia , Modelos Animais de Doenças , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Glucose/farmacologia , Hipocampo/metabolismo , Isótopos/metabolismo , Isótopos/farmacologia , Lactato Desidrogenases/metabolismo , Metabolômica/métodos , Piruvato Carboxilase , Piruvatos/farmacologia , Ratos , Estresse Psicológico/tratamento farmacológico , Succinato Desidrogenase/metabolismo
4.
Front Pharmacol ; 13: 1005438, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36353500

RESUMO

Background: There is a significant gender difference in the prevalence of depression. Recent studies have shown that estrogen plays a crucial role in depression. Therefore, studying the specific mechanism of estrogen's role in depression can provide new ideas to address the treatment of depression. Chaigui granule has been shown to have exact antidepressant efficacy, and the contents of saikosaponin (a, b1, b2, d) and paeoniflorin in Chaigui granule are about 0.737% and 0.641%, respectively. Some studies have found that they can improve depression-induced decrease in testosterone (T) levels (∼36.99% decrease compared to control). However, whether Chaigui granule can exert antidepressant efficacy by regulating estrogen is still unclear. This study aimed to elucidate the regulation of estrogen levels by Chaigui granule and the underlying mechanism of its anti-depressant effect. Methods: Eighty-four male Sprague-Dawley (SD) rats were modeled using a chronic unpredictable mild stress (CUMS) procedure. The administration method was traditional oral gavage administration, and behavioral indicators were used to evaluate the anti-depressant effect of Chaigui granule. Enzyme-linked immunosorbent assay (ELISA) was adopted to assess the modulating impact of Chaigui granule on sex hormones. Then, reverse transcription-quantitative PCR (RT-qPCR), and Western blot (WB) techniques were employed to detect extracellular regulated protein kinases (ERK) signaling-related molecules downstream of estradiol in the hippocampus tissue. Results: The administration of Chaigui granule significantly alleviated the desperate behavior of CUMS-induced depressed rats. According to the results, we found that Chaigui granule could upregulate the level of estradiol (E2) in the serum (∼46.56% increase compared to model) and hippocampus (∼26.03% increase compared to model) of CUMS rats and increase the levels of CYP19A1 gene and protein, which was the key enzyme regulating the synthesis of T into E2 in the hippocampus. Chaigui granule was also found to have a significant back-regulatory effect on the gene and protein levels of ERß, ERK1, and ERK2. Conclusion: Chaigui granule can increase the synthesis of E2 in the hippocampus of CUMS-induced depressed rats and further exert antidepressant effects by activating the CYP19A1-E2-ERKs signaling pathway.

5.
Front Psychiatry ; 13: 861285, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35686183

RESUMO

Objective: Although gastrointestinal (GI) symptoms are very common in patients with bipolar disorder (BD), Few studies have researched the pathomechanism behind these symptoms. In the present study, we aim at elucidate the pathomechanism of GI symptoms in BD through metabolomic analysis. Method: BD patients were recruited from Shanxi Bethune Hospital that divided into two groups, each group assessed with the 24-item Hamilton Depression Rating Scale (HAMD-24) according to the presence or absence of GI symptoms. Healthy controls were recruited from the medical examination center of the same hospital. Differential metabolites were identified and further analyzed using Metabo Analyst 3.0 to identify associated metabolic pathways. Results: There were significantly higher HAMD-24 scores in the GI symptoms group than that of non-GI symptoms group (p = 0.007). Based on metabolomic analysis results, we found that the common disturbances metabolic pathway of both two patients groups was ketone body metabolism, and the unique disturbances metabolic pathways of BD with GI symptoms were fatty acid biosynthesis and tyrosine metabolism, and these changes were independent of dietary habits. Conclusion: BD patients with GI symptoms exhibited disturbances in fatty acid and tyrosine metabolism, perhaps suggesting that the GI symptoms in BD patients are related to disturbances of the gut microbiome. Both groups of patients jointly exhibit disturbances of ketone body metabolism, which may serve as a biomarker for the pathogenesis of BD patients.

6.
J Proteome Res ; 21(3): 788-797, 2022 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-34699232

RESUMO

Depression is a common psychopathological state or mood disorder syndrome. The serious risks to human life and the inadequacy of the existing antidepressant drugs have driven us to understand the pathogenesis of depression from a new perspective. Our research group has found disturbances in glucose catabolism in both depression and nephrotic syndrome. What are the specific metabolic pathways and specificities of glucose catabolism disorders caused by depression? To address the above scientific questions, we creatively combined traditional metabolomics technology with stable isotope-resolved metabolomics to research the glucose catabolism of the corticosterone-induced PC12 cell damage model and the adriamycin-induced glomerular podocyte damage model. The results showed an increased flux of pyruvate metabolism in depression. The increased flux of pyruvate metabolism led to an activation of gluconeogenesis in depression. The disturbed upstream metabolism of succinate caused the tricarboxylic acid cycle (TCA cycle) to be blocked in depression. In addition, there were metabolic disturbances in the purine metabolism and pentose phosphate pathways in depression. Compared with nephrotic syndrome, pyruvate metabolism, the TCA cycle, and gluconeogenesis metabolism in depression were specific. The metabolic pathways researched above are likely to be important targets for the efficacy of antidepressants.


Assuntos
Depressão , Síndrome Nefrótica , Corticosteroides , Animais , Ciclo do Ácido Cítrico , Depressão/induzido quimicamente , Feminino , Glucose/metabolismo , Humanos , Isótopos , Masculino , Metabolômica/métodos , Células PC12 , Ácido Pirúvico , Ratos
7.
Front Pharmacol ; 12: 657047, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34759816

RESUMO

Background: Cyclophosphamide is a common tumor chemotherapy drug used to treat various cancers. However, the resulting immunosuppression leads to leukopenia, which is a serious limiting factor in clinical application. Therefore, the introduction of immunomodulators as adjuvant therapy may help to reduce the hematological side effects of cyclophosphamide. Lvjiaobuxue granule has been widely used in the clinical treatment of gynecological diseases such as anemia and irregular menstruation. Recently, it has been found to increase the function of white blood cells, but its mechanism of action is still unclear. We aimed to reveal the mechanisms of Lvjiaobuxue granule against acute leukopenia by an integrated strategy combining metabolomics with network pharmacology. Methods: Subcutaneously inoculated 4T1 breast cancer cells to prepare tumor-bearing mice, intraperitoneal injection of cyclophosphamide to establish a 4T1 tumor-bearing mice leukopenia animal model, using pharmacodynamic indicators, metabolomics, network pharmacology and molecular biology and other technical methods. To comprehensively and systematically elucidate the effect and mechanism of Lvjiaobuxue granule in improving cyclophosphamide-induced leukopenia in 4T1 tumor-bearing mice. Results: Lvjiaobuxue granule can improve the blood routine parameters and organ index levels of the leukopenia model of 4T1 tumor-bearing mice. Metabolomics studies revealed that 15 endogenous metabolites in the spleen of mice were considered as potential biomarkers of Lvjiaobuxue granule for their protective effect. Metabonomics and network pharmacology integrated analysis indicated that Lvjiaobuxue granule exerted the leukocyte elevation activity by inhibiting the branched-chain amino acids (BCAAs) degradation pathway and increasing the levels of valine, leucine and isoleucine. The results of molecular biology also showed that Lvjiaobuxue granule can significantly regulate the key enzymes in the catabolism of BCAAs, which further illustrates the importance of BCAAs in improving leukopenia. Conclusion: Lvjiaobuxue granule exerts obvious pharmacological effects on the leukopenia model of 4T1 tumor-bearing mice induced by cyclophosphamide, which could be mediated by regulating the branched-chain amino acid degradation pathway and the levels of valine, leucine and isoleucine.

8.
ACS Chem Neurosci ; 12(12): 2151-2166, 2021 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-34060807

RESUMO

Depression has drawn increasing attention from the public around the world in recent years. Studies have shown that liver injury caused by chronic stress is relevant to depression and neurotransmitter changes. It is essential to clarify the relationship between neurotransmitter changes and hepatic gene expression in depression. In this study, we used the chronic unpredictable mild stress (CUMS) model combined with UHPLC-MS to explore the changes of neurotransmitters in serum and hippocampus and to decipher the differential gene expression in the liver by using the RNA-Seq combined with multivariate statistical analysis. Compared with the control group, the levels of neurotransmitters including 5-hydroxytryptamine (5-HT), acetylcholine, glutamate (Glu), and dopamine (DA) in the hippocampus and 5-HT, norepinephrine, γ-aminobutyric acid (GABA), and 5-hydroxyindoleacetic acid in serum were significantly changed in the CUMS rats. The results of liver transcriptomic analysis and correlation analysis showed that the Glu, DA, 5-HT, and GABA were impacted by 68 liver genes which were mainly enriched in three pathways including circadian rhythm, serotonergic synapse, and p53 signaling pathway. The expressive levels of clock genes and serotonergic synapse genes were validated by using q-PCR, and the diurnal rhythms of neurotransmitters were validated by in vivo hippocampus microdialysis. The CUMS stressors might cause phase advance of Glu and GABA by adjusting clock genes. The transcriptomic technique combined with correlation analysis and in vivo microdialysis could be used to discover comprehensive pathways of depression. It provides a new strategy for the rational assessment of the mechanism of disease.


Assuntos
Ritmo Circadiano , Depressão , Animais , Ritmo Circadiano/genética , Depressão/genética , Modelos Animais de Doenças , Fígado , Neurotransmissores , Ratos , Estresse Psicológico , Transcriptoma
9.
J Proteome Res ; 20(7): 3549-3558, 2021 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-34077228

RESUMO

The severe harm of depression to human life has attracted great attention to neurologists, but its pathogenesis is extremely complicated and has not yet been fully elaborated. Here, we provided a new strategy for revealing the specific pathways of abnormal brain glucose catabolism in depression, based on the supply of energy substrates and the evaluation of the mitochondrial structure and function. By using stable isotope-resolved metabolomics, we discovered that the tricarboxylic acid cycle (TCA cycle) is blocked and gluconeogenesis is abnormally activated in chronic unpredictable mild stress (CUMS) rats. In addition, our results showed an interesting phenomenon that the brain attempted to activate all possible metabolic enzymes in energy-producing pathways, but CUMS rats still exhibited a low TCA cycle activity due to impaired mitochondria. Depression caused the mitochondrial structure and function to be impaired and then led to abnormal brain glucose catabolism. The combination of the stable isotope-resolved metabolomics and mitochondrial structure and function analysis can accurately clarify the mechanism of depression. The mitochondrial pyruvate carrier and acetyl-CoA may be the key targets for depression treatment. The strategy provides a unique insight for exploring the mechanism of depression, the discovery of new targets, and the development of ideal novel antidepressants. Data are available via ProteomeXchange with identifier PXD025548.


Assuntos
Depressão , Metabolômica , Animais , Encéfalo , Glucose , Isótopos , Ratos , Ratos Sprague-Dawley
10.
J Proteome Res ; 20(5): 2477-2486, 2021 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-33797260

RESUMO

Depression is one of the most complex multifactorial diseases affected by genetic and environmental factors. The molecular mechanism underlying depression remains largely unclear. To address this issue, a novel nervous-endocrine-immune (NEI) network module was used to find the metabolites and evaluate the diagnostic ability of patients with depression. During this process, metabolites were acquired from a professional depression metabolism database. Over-representation analysis was performed using IMPaLA. Then, the metabolite-metabolite interaction (MMI) network of the NEI system was used to select key metabolites. Finally, the receiver operating characteristic curve analysis was evaluated for the diagnostic ability of arachidonic acid. The results show that the numbers of the nervous system, endocrine system, and immune system pathways are 10, 19, and 12 and the numbers of metabolites are 38, 52, and 13, respectively. The selected shared metabolite-enriched pathways can be 97.56% of the NEI-related pathways. Arachidonic acid was extracted from the NEI system network by using an optimization formula and validated by in vivo experiments. It was indicated that the proposed model was good at screening arachidonic acid for the diagnosis of depression. This method provides reliable evidences and references for the diagnosis and mechanism research of other related diseases.


Assuntos
Depressão , Medicamentos de Ervas Chinesas , Ácido Araquidônico , Biomarcadores , Depressão/diagnóstico , Sistema Endócrino , Humanos
11.
Neurosci Lett ; 742: 135515, 2021 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-33227370

RESUMO

Bipolar disorder (BD) is a debilitating mental disorder with complex clinical manifestations and low diagnostic accuracy. Depressive episodes are most common in the course of BD with high comorbidity and suicide rates, which present greater clinical challenges than mania and hypomania episodes. However, there are no objective biomarkers for bipolar depression. The aim of this study was to detect urinary metabolite biomarkers that could be useful for the diagnosis of bipolar depression. Nuclear magnetic resonance spectroscopy was used to profile urine samples of patients with bipolar depression (n = 37) and healthy volunteers (n = 48). Data were analyzed using Orthogonal Partial Least Square Discriminant Analysis and t-test. Differential metabolites were identified (VIP > 1 and p < 0.05), and further analyzed using Metabo Analyst 3.0 to identify associated metabolic pathways. In total, we identified seven metabolites differentially expressed in patients with BD and healthy controls. Compared with healthy group, the levels of betaine, glycerol, hippuric acid, indole sulfate, trimethylamine oxide, and urea in urine samples of BD patients were significantly higher, while the level of inositol was significantly lower. Most of these small molecules are related to lipid metabolism and gut microbiota metabolism. These differential metabolites could provide critical insight into the pathological mechanisms of bipolar depression. The results of this study provide a meaningful reference for similar and further studies in the future.


Assuntos
Transtorno Bipolar/diagnóstico , Transtorno Bipolar/urina , Metabolômica/métodos , Ressonância Magnética Nuclear Biomolecular/métodos , Adolescente , Adulto , Betaína/urina , Biomarcadores/metabolismo , Biomarcadores/urina , Feminino , Hipuratos/urina , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
12.
J Ethnopharmacol ; 264: 113281, 2021 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-32810624

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: The compatibility of Bupleurum chinense DC (Chaihu)-Paeonia lactiflora Pall (Baishao) is one of the most accepted herb pairs in traditional Chinese medicine (TCM) prescriptions for treating depression. However, the combination mechanisms of this herb pair for anti-depression remain unclear. MATERIALS AND METHODS: In this study, the combined effect of Chaihu-Baishao was evaluated by the chronic unpredictable mild stress (CUMS) rat model. Secondly, network pharmacology was constructed to dissect the united mechanisms. Based on the results of network pharmacology analysis, plasma metabolomics based on ultra-high-performance liquid chromatography combined with quadrupole time-of-flight mass spectrometry (UPLC-QTOF/MS) was performed to discover the collaborative effect on metabolite regulation. Furthermore, the targets from network pharmacology and the metabolites from metabolomics were jointly analyzed to select crucial metabolism pathways by MetaScape. Finally, the key metabolic enzymes and metabolites were experimentally validated by ELISA. RESULTS: The antidepressant effect of Chaihu-Baishao herb pair was significantly better than Chaihu or Baishao in sucrose preference test (SPT), open-field test (OFT), and forced swim test (FST). In network pharmacology, herb pair played synergetic effect through regulating shared pathways, such as MAPK signaling pathway and arachidonic acid metabolism, etc. Besides, by metabolomics, the herb pair improved more metabolites (14) than a single herb (10 & 9) and has a stronger regulation effect on metabolites. Correspondingly, herb pair adjusted more metabolism pathways (5) than individual herb (4 & 4). Furthermore, the arachidonic acid metabolism was selected as crucial metabolism pathways by a joint analysis of 199 targets and 14 metabolites. The results showed that herb pair regulated arachidonic acid metabolism by synergetic reducing the level of arachidonic acid, and inhibiting the enzyme activity of prostaglandin-endoperoxide synthase 1 (PTGS1) and prostaglandin-endoperoxide synthase 2 (PTGS2). CONCLUSIONS: This work provided an integrated strategy for revealing the combination mechanisms of Chaihu-Baishao herb pair for treating depression, and also a rational way for clarifying the composition rules of TCM.


Assuntos
Antidepressivos/uso terapêutico , Bupleurum , Depressão/tratamento farmacológico , Medicamentos de Ervas Chinesas/uso terapêutico , Metabolômica/métodos , Paeonia , Animais , Antidepressivos/isolamento & purificação , Depressão/metabolismo , Depressão/psicologia , Quimioterapia Combinada , Medicamentos de Ervas Chinesas/isolamento & purificação , Masculino , Ratos , Ratos Sprague-Dawley
13.
Front Pharmacol ; 11: 512877, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33117150

RESUMO

Complex disease is a cascade process which is associated with functional abnormalities in multiple proteins and protein-protein interaction (PPI) networks. One drug one target has not been able to perfectly intervene complex diseases. Increasing evidences show that Chinese herb formula usually treats complex diseases in the form of multi-components and multi-targets. The key step to elucidate the underlying mechanism of formula in traditional Chinese medicine (TCM) is to optimize and capture the important components in the formula. At present, there are several formula optimization models based on network pharmacology has been proposed. Most of these models focus on the 2D/3D similarity of chemical structure of drug components and ignore the functional optimization space based on relationship between pathogenetic genes and drug targets. How to select the key group of effective components (KGEC) from the formula of TCM based on the optimal space which link pathogenic genes and drug targets is a bottleneck problem in network pharmacology. To address this issue, we designed a novel network pharmacological model, which takes Lang Chuang Wan (LCW) treatment of systemic lupus erythematosus (SLE) as the case. We used the weighted gene regulatory network and active components targets network to construct disease-targets-components network, after filtering through the network attribute degree, the optimization space and effective proteins were obtained. And then the KGEC was selected by using contribution index (CI) model based on knapsack algorithm. The results show that the enriched pathways of effective proteins we selected can cover 96% of the pathogenetic genes enriched pathways. After reverse analysis of effective proteins and optimization with CI index model, KGEC with 82 components were obtained, and 105 enriched pathways of KGEC targets were consistent with enriched pathways of pathogenic genes (80.15%). Finally, the key components in KGEC of LCW were evaluated by in vitro experiments. These results indicate that the proposed model with good accuracy in screening the KGEC in the formula of TCM, which provides reference for the optimization and mechanism analysis of the formula in TCM.

14.
Front Psychiatry ; 11: 667, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32760300

RESUMO

Depression is one of the most prevalent and serious mental disorders with a worldwide significant health burden. Metabolic abnormalities and disorders in patients with depression have attracted great research attention. Thirty-six metabolic biomarkers of clinical plasma metabolomics were detected by platform technologies, including gas chromatography-mass spectrometry (GC-MS), liquid chromatography-mass spectrometry (LC-MS) and proton nuclear magnetic resonance (1H-NMR), combined with multivariate data analysis techniques in previous work. The principal objective of this study was to provide valuable information for the pathogenesis of depression by comprehensive analysis of 36 metabolic biomarkers in the plasma of depressed patients. The relationship between biomarkers and enzymes were collected from the HMDB database. Then the metabolic biomarkers-enzymes interactions (MEI) network was performed and analyzed to identify hub metabolic biomarkers and enzymes. In addition, the docking score-weighted multiple pharmacology index (DSWMP) was used to assess the important pathways of hub metabolic biomarkers involved. Finally, validated these pathways by published literature. The results show that stearic acid, phytosphingosine, glycine, glutamine and phospholipids were important metabolic biomarkers. Hydrolase, transferase and acyltransferase involve the largest number of metabolic biomarkers. Nine metabolite targets (TP53, IL1B, TNF, PTEN, HLA-DRB1, MTOR, HRAS, INS and PIK3CA) of potential drug proteins for treating depression are widely involved in the nervous system, immune system and endocrine system. Seven important pathways, such as PI3K-Akt signaling pathway and mTOR signaling pathway, are closely related to the pathology mechanisms of depression. The application of important biomarkers and pathways in clinical practice may help to improve the diagnosis of depression and the evaluation of antidepressant effect, which provides important clues for the study of metabolic characteristics of depression.

15.
Front Psychiatry ; 11: 569612, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33391044

RESUMO

Bipolar disorder (BD) is a common and debilitating mental disorder. Bipolar depression is the main episode of BD. Furthermore, there are no objective biomarkers available for diagnosing the disorder. In this research, a Nuclear Magnetic Resonance (NMR) spectroscopy based on a metabonomics technique was used to analyze serum samples from 37 patients with bipolar depression and 48 healthy control participants to determine potential biomarkers for bipolar depression. In total, seven different metabolites were identified that could effectively distinguish patients from healthy controls. The metabolites indicated that disturbances of amino acid and energy metabolisms might be involved in the pathogenesis of BD. Finally, a panel consisting of four potential biomarkers (lactate, trimethylamine oxide, N-acetyl glycoprotein, and α-glucose) was identified, which showed a higher combined diagnostic ability with an area under the curve of 0.893. Our findings may contribute to the development of an objective method for diagnosing bipolar depression.

16.
Rejuvenation Res ; 23(2): 138-149, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30982406

RESUMO

Guilingji (GLJ), a traditional Chinese medicine, is of wide concern because of its remarkable antiaging effect with a long application history. It mainly consists of traditional Chinese herbs, that is, Ginseng radix et rhizoma rubra. This study focused on the anti-aging effects of GLJ on natural aging rats and its underlying mechanisms. Morris water maze was used to determine the learning and memory ability of rats. The levels of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-Px), malondialdehyde (MDA), acetylcholine (ACh), and acetylcholinesterase (AChE) in serum were determined. Furthermore, a 1H-NMR-based serum metabolomics coupled with multivariate data analysis was used to identify potential biomarkers and corresponding metabolic pathways. The results showed that GLJ significantly improved the learning and memorial dysfunctions of natural aging rats. The mechanisms of the anti-aging and memory ameliorative effects of GLJ related to balancing oxidative stress, improving cholinergic system. Its specific mechanism of action may be through regulating pyruvate metabolism and arginine and proline metabolism.


Assuntos
Envelhecimento/efeitos dos fármacos , Biomarcadores/sangue , Medicamentos de Ervas Chinesas/farmacologia , Aprendizagem em Labirinto/efeitos dos fármacos , Transtornos da Memória/tratamento farmacológico , Metaboloma/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Animais , Masculino , Ratos , Ratos Sprague-Dawley
17.
J Asian Nat Prod Res ; 22(11): 1045-1064, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31674206

RESUMO

RB-2 and RB-4 are two structural analogs of polyacetylene from Radix Bupleuri that show antidepressant effects. However, no metabolic data are available to elucidate their systemic homeostasis. Mass spectrometry combined with liver microsomes and recombinant drug-metabolizing enzymes were performed to profile the biotransformations of RB-2/RB-4 in vitro and in vivo. Oxidation should be the major metabolic pathways for them in phase I, while CYP2C9 and CYP2E1 was the major contributor. In phase II, conjugational groups usually combined with the metabolites from phase I. This study provides an important reference basis for the safety evaluation and rational application of RB-2/RB-4.


Assuntos
Bupleurum , Medicamentos de Ervas Chinesas , Microssomos Hepáticos , Estrutura Molecular , Polímero Poliacetilênico , Poli-Inos
18.
Food Funct ; 10(8): 4533-4545, 2019 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-31264676

RESUMO

Gardenia blue pigments derived from genipin reacting with amino acids have been used as natural food colorants for nearly 30 years in East Asia. However, their pharmacological effects, especially antidepressant-like effects, have not been reported so far. In this study, one of the gardenia blue pigments, was obtained from the reaction of genipin with tyrosine (genipin-tyrosine derivant (GTD)), and its antidepressant-like effects were investigated in lipopolysaccharide (LPS) or chronic unpredictable mild stress (CUMS) models. The results showed that GTD could attenuate depressive-like behaviors in both animal models. GTD reversed the LPS-induced cytokine increase of TNF-α, IL-6, and corticosterone (CORT) in mice plasma and hippocampus. In CUMS rats, GTD treatment significantly reduced hypothalamic-pituitary-adrenal (HPA) axis-related stress hormone levels in plasma including those of CORT, adrenocorticotropic hormone (ACTH), and corticotropin-releasing hormone (CRH). Besides, GTD increased plasma testosterone and hippocampal brain-derived neurotrophic factor (BDNF) levels in CUMS rats. GTD increased serotonin (5-HT), dopamine (DA), and norepinephrine (NE) in rat hippocampus and corpus striatum. Consistently, hippocampal metabolomic analysis demonstrated that GTD restored monoamine neurotransmitter metabolism, mitochondrial oxidative function, and membrane structural integrity. Our data suggested that GTD produced antidepressant-like activity through the restoration of the HPA axis hormone balance and the regulation of neurotransmitter release.


Assuntos
Antidepressivos/administração & dosagem , Depressão/tratamento farmacológico , Gardenia/química , Iridoides/química , Pigmentos Biológicos/administração & dosagem , Extratos Vegetais/administração & dosagem , Tirosina/química , Animais , Antidepressivos/química , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Corticosterona/metabolismo , Depressão/genética , Depressão/metabolismo , Depressão/psicologia , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Humanos , Interleucina-6/genética , Interleucina-6/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pigmentos Biológicos/química , Sistema Hipófise-Suprarrenal/efeitos dos fármacos , Sistema Hipófise-Suprarrenal/metabolismo , Extratos Vegetais/química , Ratos , Ratos Sprague-Dawley , Serotonina/metabolismo
19.
J Ethnopharmacol ; 238: 111839, 2019 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-30928501

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Guilingji (GLJ), a famous and classical traditional Chinese medicine (TCM) prescription, has been used to extend the lifespan and improve the life qualities of the elderly for hundreds of years in China. AIM OF THE STUDY: We aimed to explore the protective effects of GLJ on the testicular dysfunction of aging rats, as well as the regulating effects of GLJ on the metabolic disturbance and metabolite changes in natural aging rats. MATERIALS AND METHODS: Forty 23-month-old rats were divided randomly into four groups, including the old control group and three groups of GLJ treatment at 37.5, 75, and 150 mg/kg doses, respectively. Additionally, 10 four-month rats were included as the youth control group. Testicular dysfunction was first evaluated by measuring the changes in the wet weights of the testicles, concentration of serum testosterone (T), and morphologic changes of the testis. Subsequently, an 1H NMR-based metabolomics approach coupled with multivariate analysis, including partial least squares discriminant analysis (PLS-DA) and orthogonal partial least squares-discriminant analysis (OPLS-DA) was applied to monitor the metabolite changes. RESULTS: Compared with the old control group, the wet weights of the testicles and T concentration were significantly increased, while the morphologic abnormality of testicular tissues was improved by a 4-week treatment course with GLJ. Furthermore, compared with the old control group, the urinary levels of alanine, pantothenate, phenylalanine, ß-hydroxybutyrate and pyruvate were significantly decreased after a 4-week treatment course with GLJ. Additionally, we found that amino acid metabolism and pyruvate metabolism were significantly involved in the regulatory effect of GLJ. CONCLUSIONS: The current findings provided, for the first time, sound evidence of the protective effects of GLJ on testicular dysfunction from both biochemical and metabolomics perspectives. The mechanisms of GLJ could be related to regulating amino acid metabolism and pyruvate metabolism. The current study lays an important foundation for further research and for the broad clinical application of GLJ.


Assuntos
Medicamentos de Ervas Chinesas/farmacologia , Substâncias Protetoras/farmacologia , Testículo/efeitos dos fármacos , Envelhecimento , Aminoácidos/metabolismo , Animais , Masculino , Metabolômica , Espectroscopia de Prótons por Ressonância Magnética , Ácido Pirúvico/metabolismo , Ratos , Ratos Sprague-Dawley , Testículo/patologia , Testosterona/sangue
20.
J Pharm Biomed Anal ; 169: 99-110, 2019 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-30849741

RESUMO

Psychological suboptimal health state (PSHS), a subtype of suboptimal health status (SHS), seriously threatens the physical and mental health of human beings. Baihe Dihuang Tang (BDT), a traditional Chinese medicine prescription, has been used to improve PSHS in clinical and achieve significant efficacy for a long time. Exploring of the underlying mechanism of BDT improving the state of PSHS is of significant importance. In the present work, all subjects were screened in strict accordance with inclusion and exclusion criteria. the UHPLC-Q Exactive Orbitrap-MS and Trace GC-PolarisQ Mass were performed to analyze the metabolic features of BDT improving the state of PSHS. Combined with the experimental results of metabolomics and the predicted results of network pharmacology, the metabolic biological network was constructed to find the potential targets of BDT intervention on PSHS. Finally, A total of 22 differential metabolites have been identified in PSHS group. 15 plasma biomarkers were significantly regulated by BDT. The results indicated that the BDT decoction is of a significant therapeutic effect on the improvement of PSHS primarily through regulating pyruvate metabolism and phenylalanine metabolism. Moreover, it is possible for BDT to improve PSHS through the functional targets including GLO1, MAOA and MAOB, which are closely related to monoamine neurotransmitters. Here, these approaches provide a tractable, powerful tool for understanding the underlying mechanism elucidating of BDT for PSHS management.


Assuntos
Biomarcadores/metabolismo , Medicamentos de Ervas Chinesas/uso terapêutico , Redes e Vias Metabólicas/efeitos dos fármacos , Plasma/metabolismo , Adulto , Feminino , Nível de Saúde , Humanos , Masculino , Medicina Tradicional Chinesa/métodos , Saúde Mental , Metaboloma/efeitos dos fármacos , Metabolômica/métodos , Pessoa de Meia-Idade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...