Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Eur J Pharm Biopharm ; 201: 114389, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38945407

RESUMO

Liposomes represent one of the most extensively studied nano-carriers due to their potential in targeted drug delivery. However, the complex in vivo fate, particularly under pathological conditions, presents challenges for clinical translation of liposomal therapeutics. Liver serves as the most important organ for liposome accumulation and metabolism. Unfortunately, the fate of liposomes under pathological liver conditions has been significantly overlooked. This study aimed to investigate the in vivo pharmacokinetic profile and biodistribution profile of liposomes under drug-induced liver injury (DILI) conditions. Two classic DILI animal models, i.e. acetaminophen-induced acute liver injury (AILI) and triptolide-induced subacute liver injury (TILI), were established to observe the effect of pathological liver conditions on the in vivo performance of liposomes. The study revealed significant changes in the in vivo fate of liposomes following DILI, including prolonged blood circulation and enhanced hepatic accumulation of liposomes. Changes in the composition of plasma proteins and mononuclear phagocyte system (MPS)-related cell subpopulations collectively led to the altered in vivo fate of liposomes under liver injury conditions. Despite liver injury, macrophages remained the primary cells responsible for liposomes uptake in liver, with the recruited monocyte-derived macrophages exhibiting enhanced ability to phagocytose liposomes under pathological conditions. These findings indicated that high capture of liposomes by the recruited hepatic macrophages not only offered potential solutions for targeted delivery, but also warned the clinical application of patients under pathological liver conditions.


Assuntos
Acetaminofen , Doença Hepática Induzida por Substâncias e Drogas , Diterpenos , Lipossomos , Fígado , Fenantrenos , Animais , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Acetaminofen/farmacocinética , Camundongos , Masculino , Fígado/metabolismo , Fígado/efeitos dos fármacos , Distribuição Tecidual , Fenantrenos/farmacocinética , Fenantrenos/administração & dosagem , Fenantrenos/toxicidade , Diterpenos/farmacocinética , Diterpenos/administração & dosagem , Compostos de Epóxi/farmacocinética , Compostos de Epóxi/administração & dosagem , Macrófagos/metabolismo , Macrófagos/efeitos dos fármacos , Modelos Animais de Doenças , Sistemas de Liberação de Medicamentos/métodos , Camundongos Endogâmicos C57BL
2.
Int J Pharm ; 650: 123695, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38081560

RESUMO

Polyethylene glycol (PEG) plays important roles in stabilizing and lengthening circulation time of lipid nanoparticle (LNP) vaccines. Nowadays various levels of PEG antibodies have been detected in human blood, but the impact and mechanism of PEG antibodies on the in vivo performance of LNP vaccines has not been clarified thoroughly. By illustrating the distribution characteristics of PEG antibodies in human, the present study focused on the influence of PEG antibodies on the safety and efficacy of LNP-mRNA vaccine against COVID-19 in animal models. It was found that PEG antibodies led to shortened blood circulation duration, elevated accumulation and mRNA expression in liver and spleen, enhanced expression in macrophage and dendritic cells, while without affecting the production of anti-Spike protein antibodies of COVID-19 LNP vaccine. Noteworthily, PEG antibodies binding on the LNP vaccine increased probability of complement activation in animal as well as in human serum and led to lethal side effect in large dosage via intravenous injection of mice. Our data suggested that PEG antibodies in human was a risky factor of LNP-based vaccines for biosafety concerns but not efficacy.


Assuntos
COVID-19 , Nanopartículas , Vacinas , Humanos , Animais , Camundongos , Polietilenoglicóis , Vacinas de mRNA , Vacinas contra COVID-19 , Anticorpos
3.
Adv Drug Deliv Rev ; 202: 115114, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37827336

RESUMO

Safe and efficient medical therapy for brain diseases is still an unmet clinical need due to various barriers represented by the blood-brain barrier. Well-designed brain targeted nanocarriers are potential solutions for enhanced brain drug delivery; however, the complicated in vivo process attenuates performance of nanocarriers, which severely hampers clinical translation. The formation of protein corona (PC) is inevitable for nanocarriers circulation and transport in biofluids, acting as an important factor to regulate in vivo performance of nanocarriers. In this review, the reported strategies have been retrospected for better understanding current situation in developing brain targeted nanocarriers. The interplay between brain targeted nanocarriers and plasma proteins is emphasized to comprehend how the nanocarriers adsorb proteins by certain synthetic identity, and following regulations on in vivo performance of nanocarriers. More importantly, the mainstream methods to promote efficiency of nanocarriers by regulating PC, defined as in vitro functionalization and in vivo functionalization strategies, are also discussed. Finally, viewpoints about future development of brain targeted nanocarriers according to the understanding on nanocarriers-PC interaction are proposed.


Assuntos
Nanopartículas , Coroa de Proteína , Humanos , Portadores de Fármacos , Coroa de Proteína/metabolismo , Nanopartículas/metabolismo , Sistemas de Liberação de Medicamentos/métodos , Encéfalo/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...