Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Hazard Mater ; 476: 135031, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38943889

RESUMO

Faced with the escalating challenge of global plastic pollution, this study specifically addresses the research gap in the biodegradation of polystyrene (PS). A PS-degrading bacterial strain was isolated from the gut of Tenebrio molitor, and genomics, molecular docking, and proteomics were employed to thoroughly investigate the biodegradation mechanisms of Pseudomonas putida H-01 against PS. Using scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (ATR-FTIR), and contact angle analysis, significant morphological and structural changes in the PS films under the influence of the H-01 strain were observed. The study revealed several potential degradation genes and ten enzymes that were specifically upregulated in the PS degradation environment. Additionally, a novel protein with laccase-like activity, LacQ1, was purified from this strain for the first time, and its crucial role in the PS degradation process was confirmed. Through molecular docking and molecular dynamics (MD) simulations, the interactions between the enzymes and PS were detailed, elucidating the binding and catalytic mechanisms of the degradative enzymes with the substrate. These findings have deepened our understanding of PS degradation.

2.
Chemosphere ; 358: 142146, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38677604

RESUMO

Estradiol (E2), an endocrine disruptor, acts by mimicking or interfering with the normal physiological functions of natural hormones within organisms, leading to issues such as endocrine system disruption. Notably, seasonal fluctuations in environmental temperature may influence the degradation speed of estradiol (E2) in the natural environment, intensifying its potential health and ecological risks. Therefore, this study aims to explore how bacteria can degrade E2 under low-temperature conditions, unveiling their resistance mechanisms, with the goal of developing new strategies to mitigate the threat of E2 to health and ecological safety. In this paper, we found that Rhodococcus equi DSSKP-R-001 (R-001) can efficiently degrade E2 at 30 °C and 10 °C. Six genes in R-001 were shown to be involved in E2 degradation by heterologous expression at 30 °C. Among them, 17ß-HSD, KstD2, and KstD3, were also involved in E2 degradation at 10 °C; KstD was not previously known to degrade E2. RNA-seq was used to characterize differentially expressed genes (DEGs) to explore the stress response of R-001 to low-temperature environments to elucidate the strain's adaptation mechanism. At the low temperature, R-001 cells changed from a round spherical shape to a long rod or irregular shape with elevated unsaturated fatty acids and were consistent with the corresponding genetic changes. Many differentially expressed genes linked to the cold stress response were observed. R-001 was found to upregulate genes encoding cold shock proteins, fatty acid metabolism proteins, the ABC transport system, DNA damage repair, energy metabolism and transcriptional regulators. In this study, we demonstrated six E2 degradation genes in R-001 and found for the first time that E2 degradation genes have different expression characteristics at 30 °C and 10 °C. Linking R-001 to cold acclimation provides new insights and a mechanistic basis for the simultaneous degradation of E2 under cold stress in Rhodococcus adaptation.


Assuntos
Biodegradação Ambiental , Temperatura Baixa , Estradiol , Rhodococcus , Rhodococcus/genética , Rhodococcus/fisiologia , Rhodococcus/metabolismo , Estradiol/metabolismo , Disruptores Endócrinos/toxicidade , Estresse Fisiológico/genética , Regulação Bacteriana da Expressão Gênica , Expressão Gênica/efeitos dos fármacos
3.
Biotechnol Biofuels Bioprod ; 17(1): 2, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38172947

RESUMO

Lignin, a natural organic polymer that is recyclable and inexpensive, serves as one of the most abundant green resources in nature. With the increasing consumption of fossil fuels and the deterioration of the environment, the development and utilization of renewable resources have attracted considerable attention. Therefore, the effective and comprehensive utilization of lignin has become an important global research topic, with the goal of environmental protection and economic development. This review focused on the bacteria and enzymes that can bio-transform lignin, focusing on the main ways that lignin can be utilized to produce high-value chemical products. Bacillus has demonstrated the most prominent effect on lignin degradation, with 89% lignin degradation by Bacillus cereus. Furthermore, several bacterial enzymes were discussed that can act on lignin, with the main enzymes consisting of dye-decolorizing peroxidases and laccase. Finally, low-molecular-weight lignin compounds were converted into value-added products through specific reaction pathways. These bacteria and enzymes may become potential candidates for efficient lignin degradation in the future, providing a method for lignin high-value conversion. In addition, the bacterial metabolic pathways convert lignin-derived aromatics into intermediates through the "biological funnel", achieving the biosynthesis of value-added products. The utilization of this "biological funnel" of aromatic compounds may address the heterogeneous issue of the aromatic products obtained via lignin depolymerization. This may also simplify the separation of downstream target products and provide avenues for the commercial application of lignin conversion into high-value products.

4.
Environ Pollut ; 312: 120021, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36037852

RESUMO

Steroid estrogens have been detected in oceans, rivers, lakes, groundwaters, soils, and even urban water supply systems, thereby inevitably imposing serious impacts on human health and ecological safety. Indeed, many estrogen-degrading bacterial strains and degradation pathways have been reported, with the 4,5-seco pathway being particularly important. However, few studies have evaluated the use of the 4,5-seco pathway by actinomycetes to degrade 17ß-estradiol (E2). In this study, 5 genes involved in E2 degradation were identified in the Rhodococcus equi DSSKP-R-001 (R-001) genome and then heterologously expressed to confirm their functions. The transformation of E2 with hsd17b14 reached 63.7% within 30 h, resulting in transformation into estrone (E1). Furthermore, we found that At1g12200-encoded flavin-binding monooxygenase (FMOAt1g12200) can transform E1 at a rate of 51.6% within 30 h and can transform E1 into 4-hydroxyestrone (4-OH E1). In addition, catA and hsaC genes were identified to further transform 4-OH E1 at a rate of 97-99%, and this reaction was accomplished by C-C cleavage at the C4 position of the A ring of 4-OH E1. This study represents the first report on the roles of these genes in estrogen degradation and provides new insights into the mechanisms of microbial estrogen metabolism and a better understanding of E2 degradation via the 4,5-seco pathway by actinomycetes.


Assuntos
Estrona , Rhodococcus equi , 17-Hidroxiesteroide Desidrogenases/metabolismo , Estradiol/metabolismo , Estrogênios/metabolismo , Estrona/metabolismo , Flavinas , Humanos , Oxigenases de Função Mista , Rhodococcus equi/genética , Rhodococcus equi/metabolismo , Solo
5.
Microorganisms ; 11(1)2022 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-36677360

RESUMO

Bisphenol A (BPA) pollution poses an increasingly serious problem. BPA has been detected in a variety of environmental media and human tissues. Microbial degradation is an effective method of environmental BPA remediation. However, BPA is also biotoxic to microorganisms. In this study, Rhodococcus equi DSSKP-R-001 (R-001) was used to degrade BPA, and the effects of BPA on the growth metabolism, gene expression patterns, and toxicity-resistance mechanisms of Rhodococcus equi were analyzed. The results showed that R-001 degraded 51.2% of 5 mg/L BPA and that 40 mg/L BPA was the maximum BPA concentration tolerated by strain R-001. Cytochrome P450 monooxygenase and multicopper oxidases played key roles in BPA degradation. However, BPA was toxic to strain R-001, exhibiting nonlinear inhibitory effects on the growth and metabolism of this bacterium. R-001 bacterial biomass, total protein content, and ATP content exhibited V-shaped trends as BPA concentration increased. The toxic effects of BPA included the downregulation of R-001 genes related to glycolysis/gluconeogenesis, pentose phosphate metabolism, and glyoxylate and dicarboxylate metabolism. Genes involved in aspects of the BPA-resistance response, such as base excision repair, osmoprotectant transport, iron-complex transport, and some energy metabolisms, were upregulated to mitigate the loss of energy associated with BPA exposure. This study helped to clarify the bacterial mechanisms involved in BPA biodegradation and toxicity resistance, and our results provide a theoretical basis for the application of strain R-001 in BPA pollution treatments.

6.
Int J Genomics ; 2020: 9369182, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32908857

RESUMO

Estrogen contamination is recognized as one of the most serious environmental problems, causing widespread concern worldwide. Environmental estrogens are mainly derived from human and vertebrate excretion, drugs, and agricultural activities. The use of microorganisms is currently the most economical and effective method for biodegradation of environmental estrogens. Rhodococcus equi DSSKP-R-001 (R-001) has strong estrogen-degrading capabilities. Our study indicated that R-001 can use different types of estrogen as its sole carbon source for growth and metabolism, with final degradation rates above 90%. Transcriptome analysis showed that 720 (E1), 983 (E2), and 845 (EE2) genes were significantly upregulated in the estrogen-treated group compared with the control group, and 270 differentially expressed genes (DEGs) were upregulated across all treatment groups. These DEGs included ABC transporters; estrogen-degrading genes, including those that perform initial oxidation and dehydrogenation reactions and those that further degrade the resulting substrates into small molecules; and metabolism genes that complete the intracellular transformation and utilization of estrogen metabolites through biological processes such as amino acid metabolism, lipid metabolism, carbohydrate metabolism, and the tricarboxylic acid cycle. In summary, the biodegradation of estrogens is coordinated by a metabolic network of estrogen-degrading enzymes, transporters, metabolic enzymes, and other coenzymes. In this study, the metabolic mechanisms by which Rhodococcus equi R-001 degrades various estrogens were analyzed for the first time. A new pollutant metabolism system is outlined, providing a starting point for the construction of engineered estrogen-degrading bacteria.

7.
3 Biotech ; 10(4): 166, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32206500

RESUMO

The natural estrogen 17ß-estradiol (17ß-E2) is a major endocrine disruptor. Accordingly, due to their frequent presence in global surface waters, prolonged exposure to estrogen-contaminated water may disrupt sexual development in animals. It has adverse effects on wildlife and humans. To date, the most effective strategy for estrogen removal from the environment is biodegradation using microorganisms. To this end, we isolated a strain of Lysinibacillus sphaericus, namely DH-B01, from a contraceptive factory in Beijing. The experimental results revealed that the bacterium has a high capacity to degrade estrogen, with a 17ß-E2 degradation rate of about 97%, and produces the secondary metabolite estrone. In addition, a series of genes involved in steroid metabolism and stress response in L. sphaericus sp. DH-B01 were predicted, and several key genes with high similarity to those of other strains were subjected to sequence alignment to find their conserved regions. This is the first study of the ability of L. sphaericus strains to degrade estrogens and the degradation mechanism involved. This work advances the genomic study of estrogen-degrading strains and the study of bacterial estrogen degradation mechanisms. In this paper, a novel bacterial strain capable of degrading 17ß-E2 was studied. L. sphaericus sp. DH-B01 can effectively degrade 17ß-E2. During the degradation process, 17ß-E2 can be gradually metabolized to a substance without estrogen activity. By analyzing the enzymatic reactions in the metabolic process, we found genes with high similarity to reported 17ß-HSD. L. sphaericus sp. DH-B01 was found to degrade 17ß-E2. There are many types of bacteria that are currently being studied for the degradation of estrogen, but L. sphaericus sp. DH-B01 is the only strain of L. sphaericus that has been shown to degrade estrogen. This work advances the genomic study of estrogen-degrading bacterial strains and the study of bacterial estrogen degradation mechanisms. Additionally, it explores the correlation between different L. sphaericus strains. The differences play an important role and further enrich the functionality and diversity of L. sphaericus strains. In subsequent studies, the specificity of L. sphaericus sp. DH-B01 can be applied to different environments for future environmental restoration.

8.
Int J Genomics ; 2019: 2804134, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31281826

RESUMO

In this study, we isolated a new estrogen-degrading bacterium from a soil sample collected near a pharmaceutical factory in Beijing, China. Morphological observations, physiological and biochemical analyses, and sequence analysis showed that the strain was in the genus Acinetobacter, and it was named DSSKY-A-001. The estrogen degradation rate and growth density of strain DSSKY-A-001 were determined by high-performance liquid chromatography and a growth assay using a microplate reader, respectively. The estrogen degradation rate was 76% on the third day and 90% on the sixth day of culture. Three kinds of estrogen metabolism intermediates were detected by high-performance liquid chromatography and mass spectrometry, and the estrogen metabolic pathway and possible estrogen-degrading enzymes were predicted. RT-PCR was used to verify whether the three putative enzymes, catechol 1,2-dioxygenase, dioxygenase, and 7α-hydroxysteroid dehydrogenase, were expressed in the strain. The results of the validation were consistent with the predictions that these three enzymes were present and expressed in Acinetobacter DSSKY-A-001. To further understand the estrogen-degrading activity of the strain at the genetic level, we sequenced the genome and performed a functional gene annotation. Through this gene sequence analysis, we identified genes predicted to encode the previously detected enzymes, catechol 1,2-dioxygenase, dioxygenase, and 7α-hydroxysteroid dehydrogenase, as well as six other enzymes that may be involved in estrogen degradation. Therefore, a total of nine enzymes related to estrogen degradation were found.

9.
Int J Genomics ; 2018: 3505428, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30510960

RESUMO

We screened bacteria that use E2 as its sole source of carbon and energy for growth and identified them as Rhodococcus, and we named them DSSKP-R-001. For a better understanding of the metabolic potential of the strain, whole genome sequencing of Rhodococcus DSSKP-R-001 and annotation of the functional genes were performed. The genomic sketches included a predicted protein-coding gene of approximately 5.4 Mbp with G + C content of 68.72% and 5180. The genome of Rhodococcus strain DSSKP-R-001 consists of three replicons: one chromosome and two plasmids of 5.2, 0.09, and 0.09, respectively. The results showed that there were ten steroid-degrading enzymes distributed in the whole genome of the strain. The existence and expression of estradiol-degrading enzymes were verified by PCR and RTPCR. Finally, comparative genomics was used to compare multiple strains of Rhodococcus. It was found that Rhodococcus DSSKP-R-001 had the highest similarity to Rhodococcus sp. P14 and there were 2070 core genes shared with Rhodococcus sp. P14, Rhodococcus jostii RHA1, Rhodococcus opacus B4, and Rhodococcus equi 103S, showing evolutionary homology. In summary, this study provides a comprehensive understanding of the role of Rhodococcus DSSKP-R-001 in estradiol-efficient degradation of these assays for Rhodococcus. DSSKP-R-001 in bioremediation and evolution within Rhodococcus has important meaning.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...