Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Molecules ; 29(1)2023 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-38202726

RESUMO

Visible-light-enhanced TiO2 nanocatalysts doped with Cu and Fe were synthesized using the sol-gel method to investigate their performance in degrading gaseous benzene. The structure and morphology of mono- and co-doped TiO2 (i.e., Cu/Fe-TiO2, Cu-Fe-TiO2) were characterized using SEM, EDS, XRD, BET, Raman, UV-vis-DRS, and XPS techniques. The results indicated that the presence of Cu/Fe mono- and co-doped TiO2 leads to the formation of an anatase phase similar to pure TiO2. Furthermore, the introduction of Cu/Fe enhanced the presence of lattice defects and increased the specific surface area of TiO2. This enhancement can be attributed to the increase in oxygen vacancies, especially in the case of Cu-Fe-TiO2. Additionally, Cu-Fe-TiO2 showed a higher concentration of surface-bound hydroxyl groups/chemically adsorbed oxygen and a narrower bandgap than pure TiO2. Consequently, Cu-Fe-TiO2 exhibited the highest photocatalytic performance of 658.33 µgC6H6/(g·h), achieving a benzene degradation rate of 88.87%, surpassing that of pure TiO2 (5.09%), Cu-TiO2 (66.92%), and Fe-TiO2 (59.99%). Reusability tests demonstrated that Cu-Fe-TiO2 maintained a high benzene degradation efficiency of 71.4%, even after five experimental cycles, highlighting its exceptional stability and reusability. In summary, the addition of Cu/Fe to TiO2 enhances its ability to degrade gaseous benzene by prolonging the catalyst's lifespan and expanding its photoresponse range to include visible light.

2.
Environ Technol ; 43(19): 2990-2999, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33820487

RESUMO

A new type of photocatalysts, nanocrystalline titanium dioxide (TiO2) doped with Co and I, were synthesized and modified via the sol-gel method to enhance the utilization of visible light. Herein, mono- and co-doped TiO2 (i.e. Co-TiO2, I-TiO2, Co-I-TiO2) were employed as the photocatalysts to investigate the photocatalytic performance on gaseous benzene removal. The prepared photocatalysts were characterized by X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET)-specific surface areas, Raman spectroscopy, UV-visible diffuse reflectance spectroscopy (UV-vis-DRS), X-ray photoelectron spectroscopy (XPS), photoluminescence (PL), and electrochemical impedance spectroscopy (EIS). Results indicated that both particle sizes and band gaps of TiO2 were significantly reduced by doping with Co/I. Also, the lattice defects and the specific surface areas of TiO2 were substantially augmented by adding Co/I because of the increase of oxygen vacancies, especially for Co-I-TiO2. Meanwhile, Co and I were distributed on the titanium base with the existence of multivalent states. The benzene treatment capacity of Co-I-TiO2, Co-TiO2, I-TiO2 and Pure TiO2 is 441.46, 424.36, 388.06, and 51.25 µgC6H6/(g·h), respectively. To sum up, photocatalytic degradation of gaseous benzene could be improved by doping with Co/I because of the extension of catalyst lifetime and light response range covering visible light.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...