Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Plants ; 9(9): 1514-1529, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37604972

RESUMO

Ammonium toxicity affecting plant metabolism and development is a worldwide problem impeding crop production. Remarkably, rice (Oryza sativa L.) favours ammonium as its major nitrogen source in paddy fields. We set up a forward-genetic screen to decipher the molecular mechanisms conferring rice ammonium tolerance and identified rohan showing root hypersensitivity to ammonium due to a missense mutation in an argininosuccinate lyase (ASL)-encoding gene. ASL localizes to plastids and its expression is induced by ammonium. ASL alleviates ammonium-inhibited root elongation by converting the excessive glutamine to arginine. Consequently, arginine leads to auxin accumulation in the root meristem, thereby stimulating root elongation under high ammonium. Furthermore, we identified natural variation in the ASL allele between japonica and indica subspecies explaining their different root sensitivity towards ammonium. Finally, we show that ASL expression positively correlates with root ammonium tolerance and that nitrogen use efficiency and yield can be improved through a gain-of-function approach.


Assuntos
Oryza , Oryza/genética , Alelos , Arginina , Nitrogênio , Plastídeos/genética
2.
PLoS Pathog ; 19(3): e1011256, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36952577

RESUMO

Oomycetes are filamentous microorganisms easily mistaken as fungi but vastly differ in physiology, biochemistry, and genetics. This commonly-held misconception lead to a reduced effectiveness by using conventional fungicides to control oomycetes, thus it demands the identification of novel functional genes as target for precisely design oomycetes-specific microbicide. The present study initially analyzed the available transcriptome data of the model oomycete pathogen, Phytophthora sojae, and constructed an expression matrix of 10,953 genes across the stages of asexual development and host infection. Hierarchical clustering, specificity, and diversity analyses revealed a more pronounced transcriptional plasticity during the stages of asexual development than that in host infection, which drew our attention by particularly focusing on transcripts in asexual development stage to eventually clustered them into 6 phase-specific expression modules. Three of which respectively possessing a serine/threonine phosphatase (PP2C) expressed during the mycelial and sporangium stages, a histidine kinase (HK) expressed during the zoospore and cyst stages, and a bZIP transcription factor (bZIP32) exclusive to the cyst germination stage were selected for down-stream functional validation. In this way, we demonstrated that PP2C, HK, and bZIP32 play significant roles in P. sojae asexual development and virulence. Thus, these findings provide a foundation for further gene functional annotation in oomycetes and crop disease management.


Assuntos
Phytophthora , Reprodução Assexuada , Transcriptoma , Phytophthora/enzimologia , Phytophthora/genética , Phytophthora/crescimento & desenvolvimento , Phytophthora/patogenicidade , Reprodução Assexuada/genética , Regulação Fúngica da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Fosfoproteínas Fosfatases/genética , Fosfoproteínas Fosfatases/metabolismo , Estruturas Fúngicas/enzimologia , Estruturas Fúngicas/genética , Estruturas Fúngicas/crescimento & desenvolvimento , Histidina Quinase/genética , Histidina Quinase/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/genética , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Doenças das Plantas/microbiologia
3.
Front Microbiol ; 13: 1016996, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36212850

RESUMO

Early blight (EB) disease, caused mainly by Alternaria solani, is an economic threat to potato and tomato production worldwide. Thus, accurate and sensitive detection of the fungal pathogen of this disease in plants at the early infection stage is important for forecasting EB epidemics. In this study, we developed an RNA-based method that enables highly accurate and sensitive A. solani detection in a whole potato leaf at a single spore level based on quantitative real-time polymerase chain reaction (qPCR). We discovered jg1677, a highly expressed gene whose full-length coding sequence is very specific for A. solani, by analyzing A. solani transcripts isolated from enhanced high throughput transcriptome of infected potato leaves by A. solani and using the National Center for Biotechnology Information's basic local alignment search tool. The specificity of the primers derived from jg1677 was determined using 22 isolates of common potato pathogens, including seven Alternaria isolates. Detecting jg1677 transcripts with qPCR is 1,295 times more sensitive than detecting genomic DNA. In addition, the expression pattern of jg1677 at different infection stages was determined by qPCR. What is more, jg1677 was expressed relatively stable between 15 and 35°C in infected leaves, and its expression was virtually unaffected in isolated leaves left at room temperature for 24 h. Our work provides a much more sensitive and accurate method compared to conditional DNA-based ones, permitting a very early diagnosis of EB and lowering the risk of EB epidemics.

4.
Eur J Nutr ; 61(5): 2775-2797, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35290477

RESUMO

PURPOSE: A possible link between pescadillo 1 (PES1) and lipid metabolism has been reported. However, whether PES1 is involved in the effects of daily caloric restriction (CR) and alternate-day fasting (ADF) interventions on diabetes-related lipid dysregulation is not elucidated. The current study aims are to explore the role of PES1 in effects of CR and ADF on diabetic mice and related mechanism. METHODS: Eight-week-old male db/db mice with type 2 diabetes mellitus (T2DM) were randomly divided into untreated T2DM, CR and ADF groups. McArdle hepatocytes were treated with 48 h high glucose (HG), 48 h normal glucose (NG) and 24 h HG plus 24 h NG, respectively. Pes1 siRNA and overexpression plasmid were, respectively, transfected into liver cells, and AAV9-Pes1-shRNA was injected into db/db mice. RESULTS: After 12-week interventions, the peroxisome proliferator-activated receptor alpha (PPAR-α) and carnitine palmitoyltransferase 1A (CPT1A) levels in livers of T2DM mice were enhanced by CR and ADF interventions with reductions of hepatic and plasma triglycerides. Unexpectedly, hepatic PES1 levels were downregulated by two interventions, consistent with the results of 48 h NG and 24 h HG plus 24 h NG-treated cells. Moreover, CPT1A level was upregulated in Pes1-siRNA-treated cells and AAV9-Pes1-shRNA injected murine livers, in contrast to Pes1 overexpression in cultured cells. Mechanistically, 48 h NG or 24 h HG plus 24 h NG treatment increased PPAR-α binding to Pes1 promoter, suppressing the PES1 expression, thereby lowering the PES1-mediated ubiquitination of CPT1A. CONCLUSION: The present study suggests that CR and ADF may improve lipid dysregulation in diabetic mice by downregulating hepatic PES1.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Animais , Restrição Calórica , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/terapia , Jejum/fisiologia , Glucose/metabolismo , Metabolismo dos Lipídeos , Fígado/metabolismo , Masculino , Camundongos , Receptores Ativados por Proliferador de Peroxissomo/metabolismo , RNA Interferente Pequeno/metabolismo , Triglicerídeos/metabolismo
6.
J Integr Plant Biol ; 63(7): 1382-1396, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33586843

RESUMO

Plant pathogens rely on effector proteins to suppress host innate immune responses and facilitate colonization. Although the Phytophthora sojae RxLR effector Avh241 promotes Phytophthora infection, the molecular basis of Avh241 virulence remains poorly understood. Here we identified non-race specific disease resistance 1 (NDR1)-like proteins, the critical components in plant effector-triggered immunity (ETI) responses, as host targets of Avh241. Avh241 interacts with NDR1 in the plasma membrane and suppresses NDR1-participated ETI responses. Silencing of GmNDR1s increases the susceptibility of soybean to P. sojae infection, and overexpression of GmNDR1s reduces infection, which supports its positive role in plant immunity against P. sojae. Furthermore, we demonstrate that GmNDR1 interacts with itself, and Avh241 probably disrupts the self-association of GmNDR1. These data highlight an effective counter-defense mechanism by which a Phytophthora effector suppresses plant immune responses, likely by disturbing the function of NDR1 during infection.


Assuntos
Proteínas de Arabidopsis/metabolismo , Phytophthora/metabolismo , Fatores de Transcrição/metabolismo , Proteínas de Arabidopsis/genética , Membrana Celular/metabolismo , Doenças das Plantas/parasitologia , Imunidade Vegetal/genética , Imunidade Vegetal/fisiologia , Glycine max/parasitologia , Fatores de Transcrição/genética , Virulência/fisiologia
7.
J Integr Plant Biol ; 63(2): 365-377, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32725938

RESUMO

Filamentous fungal pathogens secrete effectors that modulate host immunity and facilitate infection. Fusarium graminearum is an important plant pathogen responsible for various devastating diseases. However, little is known about the function of effector proteins secreted by F. graminearum. Herein, we identified several effector candidates in the F. graminearum secretome. Among them, the secreted ribonuclease Fg12 was highly upregulated during the early stages of F. graminearum infection in soybean; its deletion compromised the virulence of F. graminearum. Transient expression of Fg12 in Nicotiana benthamiana induced cell death in a light-dependent manner. Fg12 possessed ribonuclease (RNase) activity, degrading total RNA. The enzymatic activity of Fg12 was required for its cell death-promoting effects. Importantly, the ability of Fg12 to induce cell death was independent of BAK1/SOBIR1, and treatment of soybean with recombinant Fg12 protein induced resistance to various pathogens, including F. graminearum and Phytophthora sojae. Overall, our results provide evidence that RNase effectors not only contribute to pathogen virulence but also induce plant cell death.


Assuntos
Proteínas Fúngicas/metabolismo , Fusarium/patogenicidade , Células Vegetais/microbiologia , Ribonucleases/metabolismo , Morte Celular , Resistência à Doença , Fusarium/classificação , Filogenia , Phytophthora/fisiologia , Doenças das Plantas/microbiologia , Imunidade Vegetal , Proteínas de Plantas/metabolismo , Sinais Direcionadores de Proteínas , Proteômica , RNA de Plantas/metabolismo , Glycine max/microbiologia , Nicotiana/citologia , Regulação para Cima , Virulência
8.
Metabolism ; 99: 90-101, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31351995

RESUMO

Moderate or low level hydrogen peroxides has been shown to play an important role in vascular smooth muscle cell (VSMC) function, in which the polymerase DNA-directed interacting protein 2 (Poldip2), functioned as a key regulator of NOX4 activity. In current study, we unexpectedly found that type 2 diabetes mellitus (T2DM) substantially suppresses the hepatic Poldip2 expression, and that the hepatic deficiency of Poldip2 may be correlated with dysregulation of hepatic cholesterol and plasma triglycerides. In cultured hepatocytes, we found that both insulin and leptin may inhibit hepatic expression of Poldip2 under high glucose concentration, but these suppressions were totally abolished under normoglycemic condition. POLDIP2 siRNA knockdown significantly impaired the H2O2 induction by insulin or leptin under normoglycemic condition, contributing the accumulation of cholesterol in cultured liver cells. The in vivo restoration of hepatic Poldip2 expression in T2DM mice remarkably rescued the moderate H2O2 generation in livers versus control mice, resulting in significant amelioration of hepatic cholesterol accumulation and plasma triglyceride levels. Importantly, the moderate induction of H2O2 in livers dramatically improved the hepatic PI3K-C1/AKT signaling or dampened PI3K-C2γ/AKT signaling through suppression of PTEN and PTP1B activities, thereby inhibiting the hepatic expression of HMGCR and SREBP2 for cholesterol synthesis. Moreover, the restitution of hepatic Poldip2 expression in diabetic mice significantly lowered the VLDL-cholesterol production rate, and substantially suppressed PEPCK and G6Pase expressions for gluconeogenesis, thus significantly improving the plasma insulin and glucose levels, and ITT and GTT outcomes in diabetic mice. Our findings suggest that hepatic dysregulation of Poldip2 may contribute to diabetic dyslipidemia and hyperglycemia.


Assuntos
Diabetes Mellitus Tipo 2/metabolismo , Homeostase , Fígado/metabolismo , Proteínas Mitocondriais/deficiência , Proteínas Nucleares/deficiência , Animais , Células Cultivadas , Dislipidemias/etiologia , Gluconeogênese , Glucose/fisiologia , Hiperglicemia/etiologia , Metabolismo dos Lipídeos , Lipídeos/fisiologia , Fígado/citologia , Camundongos
9.
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi ; 21(6): 1024-7, 2004 Dec.
Artigo em Chinês | MEDLINE | ID: mdl-15646357

RESUMO

This paper introduces one of the young, energetic and rapidly growing research fields in biomedical engineering-Brain-computer interface (BCI) technology, which can provide augmentative communication and control capabilities to patients with severe motor disabilities. We summarize the first two international meetings for BCI, and present the most typical research fruits. The problems in current studies and the direction for future investigation are analyzed.


Assuntos
Encéfalo/fisiologia , Eletroencefalografia/instrumentação , Processamento de Sinais Assistido por Computador/instrumentação , Interface Usuário-Computador , Auxiliares de Comunicação para Pessoas com Deficiência , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...